Find a number available in first array with numbers in second. If number not found get the immediate lower.
val a = List(1,2,3,4,5,6,7,8,9)
val b = List(1,5,10)
expected output after comparing a with b
1 --> 1
2 --> 1
3 --> 1
4 --> 1
5 --> 5
6 --> 5
7 --> 5
8 --> 5
9 --> 5
Thanks
You can use TreeSet's to() and lastOption methods as follows:
val a = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
val b = List(1, 5, 10)
import scala.collection.immutable.TreeSet
// Convert list `b` to TreeSet
val bs = TreeSet(b.toSeq: _*)
a.map( x => (x, bs.to(x).lastOption.getOrElse(Int.MinValue)) ).toMap
// res1: scala.collection.immutable.Map[Int,Int] = Map(
// 5 -> 5, 1 -> 1, 6 -> 5, 9 -> 5, 2 -> 1, 7 -> 5, 3 -> 1, 8 -> 5, 4 -> 1
// )
Note that neither list a or b needs to be ordered.
UPDATE:
Starting Scala 2.13, methods to for TreeSet is replaced with rangeTo.
Here is another approach using collect function
val a = List(1,2,3,4,5,6,7,8,9)
val b = List(1,5,10)
val result = a.collect{
case e if(b.filter(_<=e).size>0) => e -> b.filter(_<=e).reverse.head
}
//result: List[(Int, Int)] = List((1,1), (2,1), (3,1), (4,1), (5,5), (6,5), (7,5), (8,5), (9,5))
Here for every element in a check if there is a number in b i.e. which is greater than or equal to it and reverse the filter list and get its head to make it a pair.
Is there a Round Robin Queue available in Scala Collections?
I need to repeatedly iterate a list that circles through itself
val x = new CircularList(1,2,3,4)
x.next (returns 1)
x.next (returns 2)
x.next (returns 3)
x.next (returns 4)
x.next (returns 1)
x.next (returns 2)
x.next (returns 3)
... and so on
It's pretty easy to roll your own with continually and flatten:
scala> val circular = Iterator.continually(List(1, 2, 3, 4)).flatten
circular: Iterator[Int] = non-empty iterator
scala> circular.take(17).mkString(" ")
res0: String = 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
There's also a continually method on Stream—just be careful not to hold onto a reference to the head of the stream if you're going to be generating lots of elements.
You can very easily create a circular list using a Stream.
scala> val l = List(1, 2, 3, 4).toStream
l: scala.collection.immutable.Stream[Int] = Stream(1, ?)
scala> def b: Stream[Int] = l #::: b
b: Stream[Int]
scala> b.take(20).toList
res2: List[Int] = List(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)
Edit: you want to make sure to define the repeated part beforehand, once and only once, to avoid blowing the heap (structural sharing in Stream). As in:
def circular[A](a: Seq[A]): Stream[A] = {
val repeat = a.toStream
def b: Stream[A] = repeat #::: b
b
}
Version more concentrated on getting new element on every execution.
val getNext: () => Int = {
def b: Stream[Int] = List(1, 2, 3, 4).toStream #::: b
var cyclicIterator: Stream[Int] = b
() => {
val tail = cyclicIterator.tail
val result = tail.head
cyclicIterator = tail
result
}
} // could be written more sexy?
In your problem you can use it like:
for(i <- 1 to 10) yield getNext()
This is ugly in having an external mutable index, but it does do what's requested:
scala> var i = 0
scala> val ic4 = Iterator.continually { val next = IndexedSeq(1, 2, 3, 4)(i % 4); i += 1; next }
i: Int = 0
ic4: Iterator[Int] = non-empty iterator
scala> ic4 take 10 foreach { i => printf("ic4.next=%d%n", i) }
ic4.next=1
ic4.next=2
ic4.next=3
ic4.next=4
ic4.next=1
ic4.next=2
ic4.next=3
ic4.next=4
ic4.next=1
ic4.next=2
At least it illustrates Iterator.continually. There is also Stream.continually, which has the same signature.
I have a Scala List that contains some repeated numbers. I want to count the number of times a specific number will repeat itself. For example:
val list = List(1,2,3,3,4,2,8,4,3,3,5)
val repeats = list.takeWhile(_ == List(3,3)).size
And the val repeats would equal 2.
Obviously the above is pseudo-code and takeWhile will not find two repeated 3s since _ represents an integer. I tried mixing both takeWhile and take(2) but with little success. I also referred code from How to find count of repeatable elements in scala list but it appears the author is looking to achieve something different.
Thanks for your help.
This will work in this case:
val repeats = list.sliding(2).count(_.forall(_ == 3))
The sliding(2) method gives you an iterator of lists of elements and successors and then we just count where these two are equal to 3.
Question is if it creates the correct result to List(3, 3, 3)? Do you want that to be 2 or just 1 repeat.
val repeats = list.sliding(2).toList.count(_==List(3,3))
and more generally the following code returns tuples of element and repeats value for all elements:
scala> list.distinct.map(x=>(x,list.sliding(2).toList.count(_.forall(_==x))))
res27: List[(Int, Int)] = List((1,0), (2,0), (3,2), (4,0), (8,0), (5,0))
which means that the element '3' repeats 2 times consecutively at 2 places and all others 0 times.
and also if we want element repeats 3 times consecutively we just need to modify the code as follows:
list.distinct.map(x=>(x,list.sliding(3).toList.count(_.forall(_==x))))
in SCALA REPL:
scala> val list = List(1,2,3,3,3,4,2,8,4,3,3,3,5)
list: List[Int] = List(1, 2, 3, 3, 3, 4, 2, 8, 4, 3, 3, 3, 5)
scala> list.distinct.map(x=>(x,list.sliding(3).toList.count(_==List(x,x,x))))
res29: List[(Int, Int)] = List((1,0), (2,0), (3,2), (4,0), (8,0), (5,0))
Even sliding value can be varied by defining a function as:
def repeatsByTimes(list:List[Int],n:Int) =
list.distinct.map(x=>(x,list.sliding(n).toList.count(_.forall(_==x))))
Now in REPL:
scala> val list = List(1,2,3,3,4,2,8,4,3,3,5)
list: List[Int] = List(1, 2, 3, 3, 4, 2, 8, 4, 3, 3, 5)
scala> repeatsByTimes(list,2)
res33: List[(Int, Int)] = List((1,0), (2,0), (3,2), (4,0), (8,0), (5,0))
scala> val list = List(1,2,3,3,3,4,2,8,4,3,3,3,2,4,3,3,3,5)
list: List[Int] = List(1, 2, 3, 3, 3, 4, 2, 8, 4, 3, 3, 3, 2, 4, 3, 3, 3, 5)
scala> repeatsByTimes(list,3)
res34: List[(Int, Int)] = List((1,0), (2,0), (3,3), (4,0), (8,0), (5,0))
scala>
We can go still further like given a list of integers and given a maximum number
of consecutive repetitions that any of the element can occur in the list, we may need a list of 3-tuples representing (the element, number of repetitions of this element, at how many places this repetition occurred). this is more exhaustive information than the above. Can be achieved by writing a function like this:
def repeats(list:List[Int],maxRep:Int) =
{ var v:List[(Int,Int,Int)] = List();
for(i<- 1 to maxRep)
v = v ++ list.distinct.map(x=>
(x,i,list.sliding(i).toList.count(_.forall(_==x))))
v.sortBy(_._1) }
in SCALA REPL:
scala> val list = List(1,2,3,3,3,4,2,8,4,3,3,3,2,4,3,3,3,5)
list: List[Int] = List(1, 2, 3, 3, 3, 4, 2, 8, 4, 3, 3, 3, 2, 4, 3, 3, 3, 5)
scala> repeats(list,3)
res38: List[(Int, Int, Int)] = List((1,1,1), (1,2,0), (1,3,0), (2,1,3),
(2,2,0), (2,3,0), (3,1,9), (3,2,6), (3,3,3), (4,1,3), (4,2,0), (4,3,0),
(5,1,1), (5,2,0), (5,3,0), (8,1,1), (8,2,0), (8,3,0))
scala>
These results can be understood as follows:
1 times the element '1' occurred at 1 places.
2 times the element '1' occurred at 0 places.
............................................
............................................
.............................................
2 times the element '3' occurred at 6 places..
.............................................
3 times the element '3' occurred at 3 places...
............................................and so on.
Thanks to Luigi Plinge I was able to use methods in run-length encoding to group together items in a list that repeat. I used some snippets from this page here: http://aperiodic.net/phil/scala/s-99/
var n = 0
runLengthEncode(totalFrequencies).foreach{ o =>
if(o._1 > 1 && o._2==subjectNumber) n+=1
}
n
The method runLengthEncode is as follows:
private def pack[A](ls: List[A]): List[List[A]] = {
if (ls.isEmpty) List(List())
else {
val (packed, next) = ls span { _ == ls.head }
if (next == Nil) List(packed)
else packed :: pack(next)
}
}
private def runLengthEncode[A](ls: List[A]): List[(Int, A)] =
pack(ls) map { e => (e.length, e.head) }
I'm not entirely satisfied that I needed to use the mutable var n to count the number of occurrences but it did the trick. This will count the number of times a number repeats itself no matter how many times it is repeated.
If you knew your list was not very long you could do it with Strings.
val list = List(1,2,3,3,4,2,8,4,3,3,5)
val matchList = List(3,3)
(matchList.mkString(",")).r.findAllMatchIn(list.mkString(",")).length
From you pseudocode I got this working:
val pairs = list.sliding(2).toList //create pairs of consecutive elements
val result = pairs.groupBy(x => x).map{ case(x,y) => (x,y.size); //group pairs and retain the size, which is the number of occurrences.
result will be a Map[List[Int], Int] so you can the count number like:
result(List(3,3)) // will return 2
I couldn't understand if you also want to check lists of several sizes, then you would need to change the parameter to sliding to the desired size.
def pack[A](ls: List[A]): List[List[A]] = {
if (ls.isEmpty) List(List())
else {
val (packed, next) = ls span { _ == ls.head }
if (next == Nil) List(packed)
else packed :: pack(next)
}
}
def encode[A](ls: List[A]): List[(Int, A)] = pack(ls) map { e => (e.length, e.head) }
val numberOfNs = list.distinct.map{ n =>
(n -> list.count(_ == n))
}.toMap
val runLengthPerN = runLengthEncode(list).map{ t => t._2 -> t._1}.toMap
val nRepeatedMostInSuccession = runLengthPerN.toList.sortWith(_._2 <= _._2).head._1
Where runLength is defined as below from scala's 99 problems problem 9 and scala's 99 problems problem 10.
Since numberOfNs and runLengthPerN are Maps, you can get the population count of any number in the list with numberOfNs(number) and the length of the longest repitition in succession with runLengthPerN(number). To get the runLength, just compute as above with runLength(list).map{ t => t._2 -> t._1 }.