MATLAB for loop plotting with varying parameter - matlab

I want to plot this
f(x)=3*(1-x)+7*x+8.314*T((1-x)*(lnx)+x*(lnx))+20*x(1-x)
with T varying from 0 to 2000 with interval of 100{A total of 20 graphs all in the same}
Give a very basic code involving for loop and plot function.
PS : I am a beginer in MATLAB

Welcome to Matlab. :) Here's how we would do this without the loop:
% Define your function in terms of x and T
% Note that we use .* instead of * - this does a pairwise multiply
% instead of a matrix or vector multiply
f = #(x,T) 3*(1-x)+7*x+8.314*T.*((1-x).*log(x)+x.*log(x))+20*x.*(1-x);
% Set your domain
x = linspace(0, 10, 101);
T = (0:100:2000);
% Compute your function for all values of x and T
tmp = bsxfun(f, x, T');
% Plot your output, all at the same time
plot(x, tmp)

f=#(x,T) 3*(1-x)+7*x+8.314*T*((1-x).*log(x)+x.*log(x))+20*x.*(1-x);
T=0:100:2000;
x=linspace(0,10,100);
for i=1:length(T)
plot(x,f(x,T(i)));
hold on;
end

Related

Matlab: 2D Discrete Fourier Transform and Inverse

I'm trying to run a program in matlab to obtain the direct and inverse DFT for a grey scale image, but I'm not able to recover the original image after applying the inverse. I'm getting complex numbers as my inverse output. Is like i'm losing information. Any ideas on this? Here is my code:
%2D discrete Fourier transform
%Image Dimension
M=3;
N=3;
f=zeros(M,N);
f(2,1:3)=1;
f(3,1:3)=0.5;
f(1,2)=0.5;
f(3,2)=1;
f(2,2)=0;
figure;imshow(f,[0 1],'InitialMagnification','fit')
%Direct transform
for u=0:1:M-1
for v=0:1:N-1
for x=1:1:M
for y=1:1:N
F(u+1,v+1)=f(x,y)*exp(-2*pi*(1i)*((u*(x-1)/M)+(v*(y-1)/N)));
end
end
end
end
Fab=abs(F);
figure;imshow(Fab,[0 1],'InitialMagnification','fit')
%Inverse Transform
for x=0:1:M-1
for y=0:1:N-1
for u=1:1:M
for v=1:1:N
z(x+1,y+1)=(1/M*N)*F(u,v)*exp(2*pi*(1i)*(((u-1)*x/M)+((v-1)*y/N)));
end
end
end
end
figure;imshow(real(z),[0 1],'InitialMagnification','fit')
There are a couple of issues with your code:
You are not applying the definition of the DFT (or IDFT) correctly: you need to sum over the original variable(s) to obtain the transform. See the formula here; notice the sum.
In the IDFT the normalization constant should be 1/(M*N) (not 1/M*N).
Note also that the code could be made mucho more compact by vectorization, avoiding the loops; or just using the fft2 and ifft2 functions. I assume you want to compute it manually and "low-level" to verify the results.
The code, with the two corrections, is as follows. The modifications are marked with comments.
M=3;
N=3;
f=zeros(M,N);
f(2,1:3)=1;
f(3,1:3)=0.5;
f(1,2)=0.5;
f(3,2)=1;
f(2,2)=0;
figure;imshow(f,[0 1],'InitialMagnification','fit')
%Direct transform
F = zeros(M,N); % initiallize to 0
for u=0:1:M-1
for v=0:1:N-1
for x=1:1:M
for y=1:1:N
F(u+1,v+1) = F(u+1,v+1) + ...
f(x,y)*exp(-2*pi*(1i)*((u*(x-1)/M)+(v*(y-1)/N))); % add term
end
end
end
end
Fab=abs(F);
figure;imshow(Fab,[0 1],'InitialMagnification','fit')
%Inverse Transform
z = zeros(M,N);
for x=0:1:M-1
for y=0:1:N-1
for u=1:1:M
for v=1:1:N
z(x+1,y+1) = z(x+1,y+1) + (1/(M*N)) * ... % corrected scale factor
F(u,v)*exp(2*pi*(1i)*(((u-1)*x/M)+((v-1)*y/N))); % add term
end
end
end
end
figure;imshow(real(z),[0 1],'InitialMagnification','fit')
Now the original and recovered image differ only by very small values, of the order of eps, due to the usual floating-point inaccuacies:
>> f-z
ans =
1.0e-15 *
Columns 1 through 2
0.180411241501588 + 0.666133814775094i -0.111022302462516 - 0.027755575615629i
0.000000000000000 + 0.027755575615629i 0.277555756156289 + 0.212603775716506i
0.000000000000000 - 0.194289029309402i 0.000000000000000 + 0.027755575615629i
Column 3
-0.194289029309402 - 0.027755575615629i
-0.222044604925031 - 0.055511151231258i
0.111022302462516 - 0.111022302462516i
Firstly, the biggest error is that you are computing the Fourier transform incorrectly. When computing F, you need to be summing over x and y, which you are not doing. Here's how to rectify that:
F = zeros(M, N);
for u=0:1:M-1
for v=0:1:N-1
for x=1:1:M
for y=1:1:N
F(u+1,v+1)=F(u+1,v+1) + f(x,y)*exp(-2*pi*(1i)*((u*(x-1)/M)+(v*(y-1)/N)));
end
end
end
end
Secondly, in the inverse transform, your bracketing is incorrect. It should be 1/(M*N) not (1/M*N).
As an aside, at the cost of a bit more memory, you can speed up the computation by not nesting so many loops. Namely, when computing the FFT, do the following instead
x = (1:1:M)'; % x is a column vector
y = (1:1:N) ; % y is a row vector
for u = 0:1:M-1
for v = 0:1:N-1
F2(u+1,v+1) = sum(f .* exp(-2i * pi * (u*(x-1)/M + v*(y-1)/N)), 'all');
end
end
To take this method to the extreme, i.e. not using any loops at all, you would do the following (though this is not recommended, since you would lose code readability and the memory cost would increase exponentially)
x = (1:1:M)'; % x is in dimension 1
y = (1:1:N) ; % y is in dimension 2
u = permute(0:1:M-1, [1, 3, 2]); % x-freqs in dimension 3
v = permute(0:1:N-1, [1, 4, 3, 2]); % y-freqs in dimension 4
% sum the exponential terms in x and y, which are in dimensions 1 and 2.
% If you are using r2018a or older, the below summation should be
% sum(sum(..., 1), 2)
% instead of
% sum(..., [1,2])
F3 = sum(f .* exp(-2i * pi * (u.*(x-1)/M + v.*(y-1)/N)), [1, 2]);
% The resulting array F3 is 1 x 1 x M x N, to make it M x N, simply shiftdim or squeeze
F3 = squeeze(F3);

Matlab: repmat code explanation

Can anyone explain the two lines of code highlighted below which use repmat? This is taken directly from the MathWorks documentation for learning data analysis:
bin_counts = hist(c3); % Histogram bin counts
N = max(bin_counts); % Maximum bin count
mu3 = mean(c3); % Data mean
sigma3 = std(c3); % Data standard deviation
hist(c3) % Plot histogram
hold on
plot([mu3 mu3],[0 N],'r','LineWidth',2) % Mean
% --------------------------------------------------------------
X = repmat(mu3+(1:2)*sigma3,2,1); % WHAT IS THIS?
Y = repmat([0;N],1,2); % WHY IS THIS NECESSARY?
% --------------------------------------------------------------
plot(X,Y,'g','LineWidth',2) % Standard deviations
legend('Data','Mean','Stds')
hold off
Could anyone explain the X = repmat(...) line to me? I know it will be plotted for the 1 and 2 standard deviation lines.
Also, I tried commenting out the Y = ... line, and the plot looks the exact same, so what is the purpose of this line?
Thanks
Lets break the expression into multiple statements
X = repmat(mu3+(1:2)*sigma3,2,1);
is equivalent to
% First create a row vector containing one and two standard deviations from the mean.
% This is equivalent to xvals = [mu3+1*sigma3, mu3+2*sigma3];
xval = mu3 + (1:2)*sigma3;
% Repeat the matrix twice in the vertical dimension. We want to plot two vertical
% lines so the first and second point should be equal so we just use repmat to repeat them.
% This is equivalent to
% X = [xvals;
% xvals];
X = repmat(xval,2,1);
% To help understand how repmat works, if we had X = repmat(xval,3,2) we would get
% X = [xval, xval;
% xval, xval;
% xval, xval];
The logic is similar for the Y matrix except it repeats in the column direction. Together you end up with
X = [mu3+1*sigma3, mu3+2*sigma3;
mu3+1*sigma3, mu3+2*sigma3];
Y = [0, 0;
N, N];
When plot is called it plots one line per column of the X and Y matrices.
plot(X,Y,'g','LineWidth',2);
is equivalent to
plot([mu3+1*sigma3; mu3+1*sigma3], [0, N], 'g','LineWidth',2);
hold on;
plot([mu3+2*sigma3; mu3+2*sigma3], [0, N], 'g','LineWidth',2);
which plots two vertical lines, one and two standard deviations from the mean.
If you comment out Y then Y isn't defined. The reason the code still worked is probably that the previous value of Y was still stored in the workspace. If you run the command clear before running the script again you will find that the plot command will fail.

Matlab's hist3, which axis corresponds to X and which one to Y

So suppose you pass some matrix N to hist3 in Matlab, which is a m-by-2 matrix, simply for an example purposes. Where the first column is your variable X and column 2 corresponds to your variable Y.
When you run the cnt = hist3(N, {bins_X bins_Y}), you would get a m-by-m matrix. Rows here are which variable, X or Y?
OP seems to have solved his problem. However, I am leaving a code snippet exemplifying hist3's output indexing in case anyone finds it useful.
% Simulate random 2-column matrix
X = randn(1e5,2);
% Scale x-axis data to see label distinction
X(:,1) = X(:,1)*10;
% Define bins
bin_x = linspace(-30,30,80);
bin_y = linspace(-3,3,100);
% Get frequency grid
cnt = hist3(X,{bin_x,bin_y});
% Plot frequency values with surf
[x,y] = meshgrid(bin_x,bin_y);
figure
surf(x,y,cnt')
title('Original hist3 output')
xlabel('First Column')
ylabel('Second Column')
zlabel('Frequency')
% Access and modify cnt, and plot again
cnt(end,1:10) = 60;
cnt(25:55,1:55)= 0;
figure
surf(x,y,cnt')
title('Modified hist3 output')
xlabel('First Column')
ylabel('Second Column')
zlabel('Frequency')

Differentiation from FFT finding extrema

I'm trying to find zeros of a function. See my code below.
Because fft expects a numerical array, I didn't define the symbolic function to use fzero.
However, this approach is not accurate and depend on step. Do you have a better idea?
step=2000;
x=0:pi/step:2*pi;
y= 4+5*cos(10*x)+20*cos(40*x)+cos(100*x);
fy = fft(y');
fy(1:8) =0;
fy(12:end-10)=0;
fy(end-6:end)=0;
ffy = ifft(fy);
t=diff(ffy);
x=0:pi/step:2*pi-pi/step;
plot(x,t)
indices= find(t<5e-4 & t>-5e-4);
You could proceed along the array t and look for points where the values change sign. That would indicate the presence of a zero.
Actaully, MATLAB's fzero function uses a similar method. You said you didn't use it because you required an array, rather than an anonymous function, but you could convert the array into an anonymous function using simple linear interpolation like so:
func = #(k) interp1(x,t,k); % value of t(x) interpolated at x=k
fzero(func,initial_value);
EDIT : Just to clarify what I mean. If you have an array t and you want to find its zeros...
f = 5; % frequency of wave in Hz
x = 0:0.01:1; % time index
t = cos( 2*pi*f*x ); % cosine wave of frequency f
zeroList = []; % start with an empty list of zeros
for i = 2:length(t) % loop through the array t
current_t = t(i); % current value of t
previous_t = t(i-1); % previous value of t
if current_t == 0 % the case where the zero is exact
newZero = x(i);
zeroList = [zeroList,newZero];
elseif current_t*previous_t < 0 % a and b have opposite sign if a*b is -ve
% do a linear interpolation to find the zero (solve y=mx+b)
slope = (current_t-previous_t)/(x(i)-x(i-1));
newZero = x(i) - current_t/slope;
zeroList = [zeroList,newZero];
end
end
figure(1); hold on;
axis([ min(x) max(x) -(max(abs(t))) (max(abs(t))) ]);
plot(x,t,'b');
plot(x,zeros(length(x)),'k-.');
scatter(zeroList,zeros(size(zeroList)),'ro');
The zeros I get are correct:

How to plot a function using a code that I wrote with a starting point?

I wrote the code for the secant algorithm , and now I have the function :
f(x) = 2x^3 - 4x^2 + 3x , with two initial points : x0 = -1 , x1 = 2 .
My question is how can I plot the function that I wrote ,i.e. secant , with the function above , f , and the results below , in one graph ?
Is it even possible to do that ?
The results that I got after I used the secant algorithm , are :
v =
-4.0000
2.2069
2.3699
2.6617
2.5683
2.5804
Those are 6 iterations that I used on my secant algorithm , for the given x0 & x1 above .
I'd appreciate if you can explain .
EDIT :
This is the code that I used in order to get the results :
[z,n,v]=secant([-1,2],10^(-5),10^(-5),10)
for the prototype :
function [x,n,v]=secant(X,d,e,N)
% x0 is the first point
% x1 is the end point
% d is the tolerance
% e is the requested precision
% N is the number of iterations
Thanks .
I quickly threw this together, it illustrates the powerful anonymous function
and it shows you how to plot the results of the secant function (the same way as on wikipedia: http://en.wikipedia.org/wiki/File:Secant_method.svg)
What I don't understand however is why your secant function has both a tolerance and a requested precision as an input; I would think the tolerance is the result of the secant algorithm..
function [ ] = tmp1( )
f=#(x) x.^2;
[xend,n,v]=secant(f,-4,3,1e-4,50);
fprintf('after %d iterations reached final x_end = %g, f(x_end) = %g\n',n,xend,f(xend))
figure;hold on;
xtmp = linspace(min(v),max(v),250);
plot(xtmp,f(xtmp),'r'); % plot the function itself
line([v(1:end-2) v(3:end)]',[f(v(1:end-2)) zeros(n+1,1)]','Color','b','Marker','.','MarkerEdgeColor','b'); % plot the secant lines
plot(v,f(v),'.','MarkerEdgeColor','r')% plot the intermediate points of the secant algorithm
line([v(3:end) v(3:end)]',[zeros(n+1,1) f(v(3:end))]','Color','k','LineStyle','--'); % vertical lines
ylim([-4 max(f(xtmp))]); % set y axis limits for nice plotting view algorithm
end
function [xnew,n,v]=secant(f, x0,x1,e,N)
% x0 is the first point
% x_end is the end point
% e is the requested precision
% N is the number of iterations
v=zeros(N+2,1);
v(1)=x0;
v(2)=x1;
for n=0:N-1
xnew = x1 - f(x1) * (x1-x0)/(f(x1)-f(x0));
v(3+n) = xnew;
if abs(f(xnew)) <e
break;
else
x0=x1;
x1=xnew;
end
end
v(n+4:end)=[];
end
You can plot the function, and the results as scatter points.
First, define the function in a vectorical way:
f(x) = #(x) ( 2*x.^3 - 4*x.^2 + 3*x );
Then draw the function over some range:
x = -10:10;
y = f(x);
figure(); plot(x,y);
Now, show the resuls:
hold on;
scatter(v,f(v));