Chaining validation in Scala - scala

I have a Scala case class containing command-line configuration information:
case class Config(emailAddress: Option[String],
firstName: Option[String]
lastName: Option[String]
password: Option[String])
I am writing a validation function that checks that each of the values is a Some:
def validateConfig(config: Config): Try[Config] = {
if (config.emailAddress.isEmpty) {
Failure(new IllegalArgumentException("Email Address")
} else if (config.firstName.isEmpty) {
Failure(new IllegalArgumentException("First Name")
} else if (config.lastName.isEmpty) {
Failure(new IllegalArgumentException("Last Name")
} else if (config.password.isEmpty) {
Failure(new IllegalArgumentException("Password")
} else {
Success(config)
}
}
but if I understand monads from Haskell, it seems that I should be able to chain the validations together (pseudo syntax):
def validateConfig(config: Config): Try[Config] = {
config.emailAddress.map(Success(config)).
getOrElse(Failure(new IllegalArgumentException("Email Address")) >>
config.firstName.map(Success(config)).
getOrElse(Failure(new IllegalArgumentException("First Name")) >>
config.lastName.map(Success(config)).
getOrElse(Failure(new IllegalArgumentException("Last Name")) >>
config.password.map(Success(config)).
getOrElse(Failure(new IllegalArgumentException("Password"))
}
If any of the config.XXX expressions returns Failure, the whole thing (validateConfig) should fail, otherwise Success(config) should be returned.
Is there some way to do this with Try, or maybe some other class?

It's pretty straightforward to convert each Option to an instance of the right projection of Either:
def validateConfig(config: Config): Either[String, Config] = for {
_ <- config.emailAddress.toRight("Email Address").right
_ <- config.firstName.toRight("First Name").right
_ <- config.lastName.toRight("Last Name").right
_ <- config.password.toRight("Password").right
} yield config
Either isn't a monad in the standard library's terms, but its right projection is, and will provide the behavior you want in the case of failure.
If you'd prefer to end up with a Try, you could just convert the resulting Either:
import scala.util._
val validate: Config => Try[Config] = (validateConfig _) andThen (
_.fold(msg => Failure(new IllegalArgumentException(msg)), Success(_))
)
I wish that the standard library provided a nicer way to make this conversion, but it doesn't.

It's a case class, so why aren't you doing this with pattern matching?
def validateConfig(config: Config): Try[Config] = config match {
case Config(None, _, _, _) => Failure(new IllegalArgumentException("Email Address")
case Config(_, None, _, _) => Failure(new IllegalArgumentException("First Name")
case Config(_, _, None, _) => Failure(new IllegalArgumentException("Last Name")
case Config(_, _, _, None) => Failure(new IllegalArgumentException("Password")
case _ => Success(config)
}
In your simple example, my priority would be to forget monads and chaining, just get rid of that nasty if...else smell.
However, while a case class works perfectly well for a short list, for a large number of configuration options, this becomes tedious and the risk of error increases. In this case, I would consider something like this:
Add a method that returns a key->value map of the configuration options, using the option names as the keys.
Have the Validate method check if any value in the map is None
If no such value, return success.
If at least one value matches, return that value name with the error.
So assuming that somewhere is defined
type OptionMap = scala.collection.immutable.Map[String, Option[Any]]
and the Config class has a method like this:
def optionMap: OptionMap = ...
then I would write Config.validate like this:
def validate: Either[List[String], OptionMap] = {
val badOptions = optionMap collect { case (s, None) => s }
if (badOptions.size > 0)
Left(badOptions)
else
Right(optionMap)
}
So now Config.validate returns either a Left containing the name of all the bad options or a Right containing the full map of options and their values. Frankly, it probably doesn't matter what you put in the Right.
Now, anything that wants to validate a Config just calls Config.validate and examines the result. If it's a Left, it can throw an IllegalArgumentException containing one or more of the names of bad options. If it's a Right, it can do whatever it wanted to do, knowing the Config is valid.
So we could rewrite your validateConfig function as
def validateConfig(config: Config): Try[Config] = config.validate match {
case Left(l) => Failure(new IllegalArgumentException(l.toString))
case _ => Success(config)
}
Can you see how much more functional and OO this is getting?
No imperative chain of if...else
The Config object validates itself
The consequences of a Config object being invalid are left to the larger program.
I think a real example would be more complex yet, though. You are validating options by saying "Does it contain Option[String] or None?" but not checking the validity of the string itself. Really, I think your Config class should contain a map of options where the name maps to the value and to an anonymous function that validates the string. I could describe how to extend the above logic to work with that model, but I think I'll leave that as an exercise for you. I will give you a hint: you might want to return not just the list of failed options, but also the reason for failure in each case.
Oh, by the way... I hope none of the above implies that I think you should actually store the options and their values as an optionMap inside the object. I think it's useful to be able to retrieve them like that, but I wouldn't ever encourage such exposure of the actual internal representation ;)

Here's a solution that I came up with after some searching and scaladocs reading:
def validateConfig(config: Config): Try[Config] = {
for {
_ <- Try(config.emailAddress.
getOrElse(throw new IllegalArgumentException("Email address missing")))
_ <- Try(config.firstName.
getOrElse(throw new IllegalArgumentException("First name missing")))
_ <- Try(config.lastName.
getOrElse(throw new IllegalArgumentException("Last name missing")))
_ <- Try(config.password.
getOrElse(throw new IllegalArgumentException("Password missing")))
} yield config
}
Similar to Travis Brown's answer.

Related

Combine multiple extractor objects to use in one match statement

Is it possible to run multiple extractors in one match statement?
object CoolStuff {
def unapply(thing: Thing): Option[SomeInfo] = ...
}
object NeatStuff {
def unapply(thing: Thing): Option[OtherInfo] = ...
}
// is there some syntax similar to this?
thing match {
case t # CoolStuff(someInfo) # NeatStuff(otherInfo) => process(someInfo, otherInfo)
case _ => // neither Cool nor Neat
}
The intent here being that there are two extractors, and I don't have to do something like this:
object CoolNeatStuff {
def unapply(thing: Thing): Option[(SomeInfo, OtherInfo)] = thing match {
case CoolStuff(someInfo) => thing match {
case NeatStuff(otherInfo) => Some(someInfo -> otherInfo)
case _ => None // Cool, but not Neat
case _ => None// neither Cool nor Neat
}
}
Can try
object ~ {
def unapply[T](that: T): Option[(T,T)] = Some(that -> that)
}
def too(t: Thing) = t match {
case CoolStuff(a) ~ NeatStuff(b) => ???
}
I've come up with a very similar solution, but I was a bit too slow, so I didn't post it as an answer. However, since #userunknown asks to explain how it works, I'll dump my similar code here anyway, and add a few comments. Maybe someone finds it a valuable addition to cchantep's minimalistic solution (it looks... calligraphic? for some reason, in a good sense).
So, here is my similar, aesthetically less pleasing proposal:
object && {
def unapply[A](a: A) = Some((a, a))
}
// added some definitions to make your question-code work
type Thing = String
type SomeInfo = String
type OtherInfo = String
object CoolStuff {
def unapply(thing: Thing): Option[SomeInfo] = Some(thing.toLowerCase)
}
object NeatStuff {
def unapply(thing: Thing): Option[OtherInfo] = Some(thing.toUpperCase)
}
def process(a: SomeInfo, b: OtherInfo) = s"[$a, $b]"
val res = "helloworld" match {
case CoolStuff(someInfo) && NeatStuff(otherInfo) =>
process(someInfo, otherInfo)
case _ =>
}
println(res)
This prints
[helloworld, HELLOWORLD]
The idea is that identifiers (in particular, && and ~ in cchantep's code) can be used as infix operators in patterns. Therefore, the match-case
case CoolStuff(someInfo) && NeatStuff(otherInfo) =>
will be desugared into
case &&(CoolStuff(someInfo), NeatStuff(otherInfo)) =>
and then the unapply method method of && will be invoked which simply duplicates its input.
In my code, the duplication is achieved by a straightforward Some((a, a)). In cchantep's code, it is done with fewer parentheses: Some(t -> t). The arrow -> comes from ArrowAssoc, which in turn is provided as an implicit conversion in Predef. This is just a quick way to create pairs, usually used in maps:
Map("hello" -> 42, "world" -> 58)
Another remark: notice that && can be used multiple times:
case Foo(a) && Bar(b) && Baz(c) => ...
So... I don't know whether it's an answer or an extended comment to cchantep's answer, but maybe someone finds it useful.
For those who might miss the details on how this magic actually works, just want to expand the answer by #cchantep anf #Andrey Tyukin (comment section does not allow me to do that).
Running scalac with -Xprint:parser option will give something along those lines (scalac 2.11.12)
def too(t: String) = t match {
case $tilde(CoolStuff((a # _)), NeatStuff((b # _))) => $qmark$qmark$qmark
}
This basically shows you the initial steps compiler does while parsing source into AST.
Important Note here is that the rules why compiler makes this transformation are described in Infix Operation Patterns and Extractor Patterns. In particular, this allows you to use any object as long as it has unapply method, like for example CoolStuff(a) AndAlso NeatStuff(b). In previous answers && and ~ were picked up as also possible but not the only available valid identifiers.
If running scalac with option -Xprint:patmat which is a special phase for translating pattern matching one can see something similar to this
def too(t: String): Nothing = {
case <synthetic> val x1: String = t;
case9(){
<synthetic> val o13: Option[(String, String)] = main.this.~.unapply[String](x1);
if (o13.isEmpty.unary_!)
{
<synthetic> val p3: String = o13.get._1;
<synthetic> val p4: String = o13.get._2;
{
<synthetic> val o12: Option[String] = main.this.CoolStuff.unapply(p3);
if (o12.isEmpty.unary_!)
{
<synthetic> val o11: Option[String] = main.this.NeatStuff.unapply(p4);
if (o11.isEmpty.unary_!)
matchEnd8(scala.this.Predef.???)
Here ~.unapply will be called on input parameter t which will produce Some((t,t)). The tuple values will be extracted into variables p3 and p4. Then, CoolStuff.unapply(p3) will be called and if the result is not None NeatStuff.unapply(p4) will be called and also checked if it is not empty. If both are not empty then according to Variable Patterns a and b will be bound to returned results inside corresponding Some.

Return a User if it exists, otherwise inserting if email address Option is present

If I have an email, I want to either get the user by email if it exists. If it doesn't exist, I want to insert and return the User.
val userOptFut: Future[Option[User] = emailOpt.map { email =>
userDao.getByEmail(email).map { maybeUserFut =>
maybeUserFut match {
case Some(u) => Future.successful(Some(u))
case None =>
userDao.insert(User(....)) // Future[User]
}
}
}.getOrElse(Future.successful(None))
Where userDao.getByEmail(..) returns Future[Option[User]]
I am not sure what is wrong, but for some reason it says I am return a Object and not a User.
expression of type Future[Object] does not conform to expected type
Future[Option[User]]
What is wrong with the above?
It's really difficult with nesting like that to match the types up correctly everywhere. What the compiler ends up doing is inferring the most specific type it can, which is Object, and that doesn't match your declared types.
It really helps to break down your functions into smaller pieces, with fewer levels of nesting, so the types are much more difficult to mess up. I would do it something like the following:
// This is very close to Future.sequence, but Option isn't a subclass
// of TraversableOnce. There's probably an existing function to do
// this in a library like cats or scalaz.
def toFutureOption[A](in: Option[Future[A]]): Future[Option[A]] = in match {
case Some(fut) => fut map {Some(_)}
case None => Future.successful(None)
}
def getOrInsert(email: String): Future[User] =
userDao.getByEmail(email) transformWith {
case Success(Some(user)) => Future.successful(user)
case Success(None) | Failure(_) => userDao.insert(User(email))
}
val userOptFut: Future[Option[User]] =
toFutureOption(emailOpt map getOrInsert)
Your problem is that the two branches of your match statement don't return the same type:
case Some(u) => u // User
case None => userDao.insert(User(....)) // Future[User]
Depending on what you are trying to achieve, you could do something like this:
case Some(u) => Future.successful(Some(u))
The .getOrElse at the end may not be suitable for your type either.

Avoiding deeply nested Option cascades in Scala

Say I have three database access functions foo, bar, and baz that can each return Option[A] where A is some model class, and the calls depend on each other.
I would like to call the functions sequentially and in each case, return an appropriate error message if the value is not found (None).
My current code looks like this:
Input is a URL: /x/:xID/y/:yID/z/:zID
foo(xID) match {
case None => Left(s"$xID is not a valid id")
case Some(x) =>
bar(yID) match {
case None => Left(s"$yID is not a valid id")
case Some(y) =>
baz(zID) match {
case None => Left(s"$zID is not a valid id")
case Some(z) => Right(process(x, y, z))
}
}
}
As can be seen, the code is badly nested.
If instead, I use a for comprehension, I cannot give specific error messages, because I do not know which step failed:
(for {
x <- foo(xID)
y <- bar(yID)
z <- baz(zID)
} yield {
Right(process(x, y, z))
}).getOrElse(Left("One of the IDs was invalid, but we do not know which one"))
If I use map and getOrElse, I end up with code almost as nested as the first example.
Is these some better way to structure this to avoid the nesting while allowing specific error messages?
You can get your for loop working by using right projections.
def ckErr[A](id: String, f: String => Option[A]) = (f(id) match {
case None => Left(s"$id is not a valid id")
case Some(a) => Right(a)
}).right
for {
x <- ckErr(xID, foo)
y <- ckErr(yID, bar)
z <- ckErr(zID, baz)
} yield process(x,y,z)
This is still a little clumsy, but it has the advantage of being part of the standard library.
Exceptions are another way to go, but they slow things down a lot if the failure cases are common. I'd only use that if failure was truly exceptional.
It's also possible to use non-local returns, but it's kind of awkward for this particular setup. I think right projections of Either are the way to go. If you really like working this way but dislike putting .right all over the place, there are various places you can find a "right-biased Either" which will act like the right projection by default (e.g. ScalaUtils, Scalaz, etc.).
Instead of using an Option I would instead use a Try. That way you have the Monadic composition that you'd like mixed with the ability to retain the error.
def myDBAccess(..args..) =
thingThatDoesStuff(args) match{
case Some(x) => Success(x)
case None => Failure(new IdError(args))
}
I'm assuming in the above that you don't actually control the functions and can't refactor them to give you a non-Option. If you did, then simply substitute Try.
I know this question was answered some time back, but I wanted to give an alternative to the accepted answer.
Given that, in your example, the three Options are independent, you can treat them as Applicative Functors and use ValidatedNel from Cats to simplify and aggregate the handling of the unhappy path.
Given the code:
import cats.data.Validated.{invalidNel, valid}
def checkOption[B, T](t : Option[T])(ifNone : => B) : ValidatedNel[B, T] = t match {
case None => invalidNel(ifNone)
case Some(x) => valid(x)
def processUnwrappedData(a : Int, b : String, c : Boolean) : String = ???
val o1 : Option[Int] = ???
val o2 : Option[String] = ???
val o3 : Option[Boolean] = ???
You can then replicate obtain what you want with:
//import cats.syntax.cartesian._
(
checkOption(o1)(s"First option is not None") |#|
checkOption(o2)(s"Second option is not None") |#|
checkOption(o3)(s"Third option is not None")
) map (processUnwrappedData)
This approach will allow you to aggregate failures, which was not possible in your solution (as using for-comprehensions enforces sequential evaluation). More examples and documentation can be found here and here.
Finally this solution uses Cats Validated but could easily be translated to Scalaz Validation
I came up with this solution (based on #Rex's solution and his comments):
def ifTrue[A](boolean: Boolean)(isFalse: => A): RightProjection[A, Unit.type] =
Either.cond(boolean, Unit, isFalse).right
def none[A](option: Option[_])(isSome: => A): RightProjection[A, Unit.type] =
Either.cond(option.isEmpty, Unit, isSome).right
def some[A, B](option: Option[A])(ifNone: => B): RightProjection[B, A] =
option.toRight(ifNone).right
They do the following:
ifTrue is used when a function returns a Boolean, with true being the "success" case (e.g.: isAllowed(userId)). It actually returns Unit so should be used as _ <- ifTrue(...) { error } in a for comprehension.
none is used when a function returns an Option with None being the "success" case (e.g.: findUser(email) for creating accounts with unique email addresses). It actually returns Unit so should be used as _ <- none(...) { error } in a for comprehension.
some is used when a function returns an Option with Some() being the "success" case (e.g.: findUser(userId) for a GET /users/userId). It returns the contents of the Some: user <- some(findUser(userId)) { s"user $userId not found" }.
They are used in a for comprehension:
for {
x <- some(foo(xID)) { s"$xID is not a valid id" }
y <- some(bar(yID)) { s"$yID is not a valid id" }
z <- some(baz(zID)) { s"$zID is not a valid id" }
} yield {
process(x, y, z)
}
This returns an Either[String, X] where the String is an error message and the X is the result of calling process.

Can extractors be customized with parameters in the body of a case statement (or anywhere else that an extractor would be used)?

Basically, I would like to be able to build a custom extractor without having to store it in a variable prior to using it.
This isn't a real example of how I would use it, it would more likely be used in the case of a regular expression or some other string pattern like construct, but hopefully it explains what I'm looking for:
def someExtractorBuilder(arg:Boolean) = new {
def unapply(s:String):Option[String] = if(arg) Some(s) else None
}
//I would like to be able to use something like this
val {someExtractorBuilder(true)}(result) = "test"
"test" match {case {someExtractorBuilder(true)}(result) => result }
//instead I would have to do this:
val customExtractor = someExtractorBuilder(true)
val customExtractor(result) = "test"
"test" match {case customExtractor(result) => result}
When just doing a single custom extractor it doesn't make much difference, but if you were building a large list of extractors for a case statement, it could make things more difficult to read by separating all of the extractors from their usage.
I expect that the answer is no you can't do this, but I thought I'd ask around first :D
Parameterising extractors would be cool, but we don't have the resources to implement them right now.
Nope.
8.1.7 Extractor Patterns
An extractor pattern x (p 1 , . . . ,
p n ) where n ≥ 0 is of the same
syntactic form as a constructor
pattern. However, instead of a case
class, the stable identifier x denotes
an object which has a member method
named unapply or unapplySeq that
matches the pattern.
One can customize extractors to certain extent using implicit parameters, like this:
object SomeExtractorBuilder {
def unapply(s: String)(implicit arg: Boolean): Option[String] = if (arg) Some(s) else None
}
implicit val arg: Boolean = true
"x" match {
case SomeExtractorBuilder(result) =>
result
}
Unfortunately this cannot be used when you want to use different variants in one match, as all case statements are in the same scope. Still, it can be useful sometimes.
Late but there is a scalac plugin in one of my lib providing syntax ~(extractorWith(param), bindings):
x match {
case ~(parametrizedExtractor(param)) =>
"no binding"
case ~(parametrizedExtractor(param), (a, b)) =>
s"extracted bindings: $a, $b"
}
https://github.com/cchantep/acolyte/blob/master/scalac-plugin/readme.md
Though what you are asking isn't directly possible,
it is possible to create an extractor returning a contaner that gets evaluated value in the if-part of the case evaluation. In the if part it is possible to provide parameters.
object DateExtractor {
def unapply(in: String): Option[DateExtractor] = Some(new DateExtractor(in));
}
class DateExtractor(input:String){
var value:LocalDate=null;
def apply():LocalDate = value;
def apply(format: String):Boolean={
val formater=DateTimeFormatter.ofPattern(format);
try{
val parsed=formater.parse(input, TemporalQueries.localDate());
value=parsed
true;
} catch {
case e:Throwable=>{
false
}
}
}
}
Usage:
object DateExtractorUsage{
def main(args: Array[String]): Unit = {
"2009-12-31" match {
case DateExtractor(ext) if(ext("dd-MM-yyyy"))=>{
println("Found dd-MM-yyyy date:"+ext())
}
case DateExtractor(ext) if(ext("yyyy-MM-dd"))=>{
println("Found yyyy-MM-dd date:"+ext())
}
case _=>{
println("Unable to parse date")
}
}
}
}
This pattern preserves the PartialFunction nature of the piece of code. I find this useful since I am quite a fan of the collect/collectFirst methods, which take a partial function as a parameter and typically does not leave room for precreating a set of extractors.

Using Either to process failures in Scala code

Option monad is a great expressive way to deal with something-or-nothing things in Scala. But what if one needs to log a message when "nothing" occurs? According to the Scala API documentation,
The Either type is often used as an
alternative to scala.Option where Left
represents failure (by convention) and
Right is akin to Some.
However, I had no luck to find best practices using Either or good real-world examples involving Either for processing failures. Finally I've come up with the following code for my own project:
def logs: Array[String] = {
def props: Option[Map[String, Any]] = configAdmin.map{ ca =>
val config = ca.getConfiguration(PID, null)
config.properties getOrElse immutable.Map.empty
}
def checkType(any: Any): Option[Array[String]] = any match {
case a: Array[String] => Some(a)
case _ => None
}
def lookup: Either[(Symbol, String), Array[String]] =
for {val properties <- props.toRight('warning -> "ConfigurationAdmin service not bound").right
val logsParam <- properties.get("logs").toRight('debug -> "'logs' not defined in the configuration").right
val array <- checkType(logsParam).toRight('warning -> "unknown type of 'logs' confguration parameter").right}
yield array
lookup.fold(failure => { failure match {
case ('warning, msg) => log(LogService.WARNING, msg)
case ('debug, msg) => log(LogService.DEBUG, msg)
case _ =>
}; new Array[String](0) }, success => success)
}
(Please note this is a snippet from a real project, so it will not compile on its own)
I'd be grateful to know how you are using Either in your code and/or better ideas on refactoring the above code.
Either is used to return one of possible two meaningful results, unlike Option which is used to return a single meaningful result or nothing.
An easy to understand example is given below (circulated on the Scala mailing list a while back):
def throwableToLeft[T](block: => T): Either[java.lang.Throwable, T] =
try {
Right(block)
} catch {
case ex => Left(ex)
}
As the function name implies, if the execution of "block" is successful, it will return "Right(<result>)". Otherwise, if a Throwable is thrown, it will return "Left(<throwable>)". Use pattern matching to process the result:
var s = "hello"
throwableToLeft { s.toUpperCase } match {
case Right(s) => println(s)
case Left(e) => e.printStackTrace
}
// prints "HELLO"
s = null
throwableToLeft { s.toUpperCase } match {
case Right(s) => println(s)
case Left(e) => e.printStackTrace
}
// prints NullPointerException stack trace
Hope that helps.
Scalaz library has something alike Either named Validation. It is more idiomatic than Either for use as "get either a valid result or a failure".
Validation also allows to accumulate errors.
Edit: "alike" Either is complettly false, because Validation is an applicative functor, and scalaz Either, named \/ (pronounced "disjonction" or "either"), is a monad.
The fact that Validation can accumalate errors is because of that nature. On the other hand, / has a "stop early" nature, stopping at the first -\/ (read it "left", or "error") it encounters. There is a perfect explanation here: http://typelevel.org/blog/2014/02/21/error-handling.html
See: http://scalaz.googlecode.com/svn/continuous/latest/browse.sxr/scalaz/example/ExampleValidation.scala.html
As requested by the comment, copy/paste of the above link (some lines removed):
// Extracting success or failure values
val s: Validation[String, Int] = 1.success
val f: Validation[String, Int] = "error".fail
// It is recommended to use fold rather than pattern matching:
val result: String = s.fold(e => "got error: " + e, s => "got success: " + s.toString)
s match {
case Success(a) => "success"
case Failure(e) => "fail"
}
// Validation is a Monad, and can be used in for comprehensions.
val k1 = for {
i <- s
j <- s
} yield i + j
k1.toOption assert_≟ Some(2)
// The first failing sub-computation fails the entire computation.
val k2 = for {
i <- f
j <- f
} yield i + j
k2.fail.toOption assert_≟ Some("error")
// Validation is also an Applicative Functor, if the type of the error side of the validation is a Semigroup.
// A number of computations are tried. If the all success, a function can combine them into a Success. If any
// of them fails, the individual errors are accumulated.
// Use the NonEmptyList semigroup to accumulate errors using the Validation Applicative Functor.
val k4 = (fNel <**> fNel){ _ + _ }
k4.fail.toOption assert_≟ some(nel1("error", "error"))
The snippet you posted seems very contrived. You use Either in a situation where:
It's not enough to just know the data isn't available.
You need to return one of two distinct types.
Turning an exception into a Left is, indeed, a common use case. Over try/catch, it has the advantage of keeping the code together, which makes sense if the exception is an expected result. The most common way of handling Either is pattern matching:
result match {
case Right(res) => ...
case Left(res) => ...
}
Another interesting way of handling Either is when it appears in a collection. When doing a map over a collection, throwing an exception might not be viable, and you may want to return some information other than "not possible". Using an Either enables you to do that without overburdening the algorithm:
val list = (
library
\\ "books"
map (book =>
if (book \ "author" isEmpty)
Left(book)
else
Right((book \ "author" toList) map (_ text))
)
)
Here we get a list of all authors in the library, plus a list of books without an author. So we can then further process it accordingly:
val authorCount = (
(Map[String,Int]() /: (list filter (_ isRight) map (_.right.get)))
((map, author) => map + (author -> (map.getOrElse(author, 0) + 1)))
toList
)
val problemBooks = list flatMap (_.left.toSeq) // thanks to Azarov for this variation
So, basic Either usage goes like that. It's not a particularly useful class, but if it were you'd have seen it before. On the other hand, it's not useless either.
Cats has a nice way to create an Either from exception-throwing code:
val either: Either[NumberFormatException, Int] =
Either.catchOnly[NumberFormatException]("abc".toInt)
// either: Either[NumberFormatException,Int] = Left(java.lang.NumberFormatException: For input string: "abc")
in https://typelevel.org/cats/datatypes/either.html#working-with-exception-y-code