Matlab: Finding two unknown constants/parameters in an equation - matlab

I've read up on fsolve and solve, and tried various methods of curve fitting/regression but I feel I need a bit of guidance here before I spend more time trying to make something work that might be the wrong approach.
I have a series of equations I am trying to fit to a data set (x) separately:
for example:
(a+b*c)*d = x
a*(1+b*c)*d = x
x = 1.9248
3.0137
4.0855
5.0097
5.7226
6.2064
6.4655
6.5108
6.3543
6.0065
c= 0.0200
0.2200
0.4200
0.6200
0.8200
1.0200
1.2200
1.4200
1.6200
1.8200
d = 1.2849
2.2245
3.6431
5.6553
8.3327
11.6542
15.4421
19.2852
22.4525
23.8003
I know c, d and x - they are observations. My unknowns are a and b, and should be constant.
I could do it manually for each x observation but there must be an automatic and far superior way or at least another approach.
Very grateful if I could receive some guidance. Thanks for the time!

Given your two example equations; let y=x./d, then
y = a+b*c
y = a+a*b*c
The first case is just a line, for which you can obtain a least squares fit (values for a and b) with polyfit(). In the second case, you can just say k=a*b (since these are both fitted anyway), then rewrite it as:
y = a+k*c
Which is exactly the same line as the first problem, except now b = k/a. In fact, b=b1/a is the solution to the second problem where b1 is the fit from the first problem. In short, to solve them both, you need one call to polyfit() and a couple of divisions.
Will that work for you?

I see two different equations to fit here. To spell out the code:
For (a+b*c)*d = x
p = polyfit(c, x./d, 1);
a = p(2);
b = p(1);
For a*(1+b*c)*d = x
p = polyfit(c, x./d, 1);
a = p(2);
b = p(1) / a;

No need for polyfit; this is just a linear least squares problem, which is best solved with MATLAB's slash operator:
>> ab = [ones(size(c)) c] \ (x./d)
ans =
1.411437211703194e+000 % 'a'
-7.329687661579296e-001 % 'b'
Faster, cleaner, more educative :)
And, as Emmet already said, your second equation is nothing more than a different form of your first equation, the difference being that the b in your first equation, is equal to a*b in your second one.

Related

Why is this the correct way to do a cost function for a neural network?

So after beating my head against the wall for a few hours, I looked online for a solution to my problem, and it worked great. I just want to know what caused the issue with the way I was originally going about it.
here are some more details. The input is a 20x20px image from the MNIST datset, and there are 5000 samples, so X, or A1 is 5000x400. There are 25 nodes in the single hidden layer. The output is a one hot vector of 0-9 digits. y (not Y, which is the one hot encoding of y) is a 5000x1 vector with the value of 1-10.
Here was my original code for the cost function:
Y = zeros(m, num_labels);
for i = 1:m
Y(i, y(i)) = 1;
endfor
H = sigmoid(Theta2*[ones(1,m);sigmoid(Theta1*[ones(m, 1) X]'))
J = (1/m) * sum(sum((-Y*log(H]))' - (1-Y)*log(1-H]))')))
But then I found this:
A1 = [ones(m, 1) X];
Z2 = A1 * Theta1';
A2 = [ones(size(Z2, 1), 1) sigmoid(Z2)];
Z3 = A2*Theta2';
H = A3 = sigmoid(Z3);
J = (1/m)*sum(sum((-Y).*log(H) - (1-Y).*log(1-H), 2));
I see that this may be slightly cleaner, but what functionally causes my original code to get 304.88 and the other to get ~ 0.25? Is it the element wise multiplication?
FYI, this is the same problem as this question if you need the formal equation written out.
Thanks for any help I can get! I really want to understand where I'm going wrong
Transfer from the comments:
With a quick look, in J = (1/m) * sum(sum((-Y*log(H]))' - (1-Y)*log(1-H]))'))) there is definetely something going on with the parenthesis, but probably on how you pasted it here, not with the original code as this would throw an error when you run it. If I understand correctly and Y, H are matrices, then in your 1st version Y*log(H) is matrix multiplication while in the 2nd version Y.*log(H) is an entrywise multiplication (not matrix-multiplication, just c(i,j)=a(i,j)*b(i,j) ).
Update 1:
In regards to your question in the comment.
From the first screenshot, you represent each value yk(i) in the entry Y(i,k) of the Y matrix and each value h(x^(i))k as H(i,k). So basically, for each i,k you want to compute Y(i,k) log(H(i,k)) + (1-Y(i,k)) log(1-H(i,k)). You can do it for all the values together and store the result in matrix C. Then C = Y.*log(H) + (1-Y).*log(1-H) and each C(i,k) has the above mentioned value. This is an operation .* because you want to do the operation for each element (i,k) of each matrix (in contrast to multiplying the matrices which is totally different). Afterwards, to get the sum of all the values inside the 2D dimensional matrix C, you use the octave function sum twice: sum(sum(C)) to sum both columnwise and row-wise (or as # Irreducible suggested, just sum(C(:))).
Note there may be other errors as well.

How to find coefficients for a possible exponential approximation

I have data like this:
y = [0.001
0.0042222222
0.0074444444
0.0106666667
0.0138888889
0.0171111111
0.0203333333
0.0235555556
0.0267777778
0.03]
and
x = [3.52E-06
9.72E-05
0.0002822918
0.0004929136
0.0006759156
0.0008199029
0.0009092797
0.0009458332
0.0009749509
0.0009892005]
and I want y to be a function of x with y = a(0.01 − b*n^−cx).
What is the best and easiest computational approach to find the best combination of the coefficients a, b and c that fit to the data?
Can I use Octave?
Your function
y = a(0.01 − b*n−cx)
is in quite a specific form with 4 unknowns. In order to estimate your parameters from your list of observations I would recommend that you simplify it
y = β1 + β2β3x
This becomes our objective function and we can use ordinary least squares to solve for a good set of betas.
In default Matlab you could use fminsearch to find these β parameters (lets call it our parameter vector, β), and then you can use simple algebra to get back to your a, b, c and n (assuming you know either b or n upfront). In Octave I'm sure you can find an equivalent function, I would start by looking in here: http://octave.sourceforge.net/optim/index.html.
We're going to call fminsearch, but we need to somehow pass in your observations (i.e. x and y) and we will do that using anonymous functions, so like example 2 from the docs:
beta = fminsearch(#(x,y) objfun(x,y,beta), beta0) %// beta0 are your initial guesses for beta, e.g. [0,0,0] or [1,1,1]. You need to pick these to be somewhat close to the correct values.
And we define our objective function like this:
function sse = objfun(x, y, beta)
f = beta(1) + beta(2).^(beta(3).*x);
err = sum((y-f).^2); %// this is the sum of square errors, often called SSE and it is what we are trying to minimise!
end
So putting it all together:
y= [0.001; 0.0042222222; 0.0074444444; 0.0106666667; 0.0138888889; 0.0171111111; 0.0203333333; 0.0235555556; 0.0267777778; 0.03];
x= [3.52E-06; 9.72E-05; 0.0002822918; 0.0004929136; 0.0006759156; 0.0008199029; 0.0009092797; 0.0009458332; 0.0009749509; 0.0009892005];
beta0 = [0,0,0];
beta = fminsearch(#(x,y) objfun(x,y,beta), beta0)
Now it's your job to solve for a, b and c in terms of beta(1), beta(2) and beta(3) which you can do on paper.

Finding unknown limit of integration in MATLAB

I have an equation of the form c = integral of f(t)dt limiting from a constant to a variable (I don't want to show the full equation because it is very long and complex). Is there any way to calculate in MATLAB what the value of that variable is (there are no other variables and the equation is too difficult to solve by hand)?
Assume your limit is from cons to t and g(t) as your function with variable t. Now,
syms t
f(t) = int(g(t),t);
This will give you the indefinite integral. Now f(t) will be
f(t) = f(t)+f(cons);
You have the value of f(t)=c. So just solve the equation
S = solve(f(t)==c,t,'Real',true);
eval(S) will give the answer i think
This is an extremely unclear question - if you do not want to post the full equation, post an example instead
I am assuming this is what you intend: you have an integrand f(x), which you know, and has been integrated to give some constant c which you know, over the limits of x = 0, to x = y, for example, where y may change, and you desire to find y
My advice would be to integrate f(x) manually, fill in the first limit, and subtract that portion from c. Next you could employ some technique such as the Newton-Ralphson method to iteratively search for the root to your equation, which should be in x only
You could use a function handle and the quad function for the integral
myFunc = #(t) exp(t*3); % or whatever
t0 = 0;
t1 = 3;
L = 50;
f = #(b) quad(#(t) myFunc(t,b),t0,t1);
bsolve = fzero(f,2);
Hope it help !

Matlab: finding coefficients of ODE system

I have all the data and an ODE system of three equations which has 9 unknown coefficients (a1, a2,..., a9).
dS/dt = a1*S+a2*D+a3*F
dD/dt = a4*S+a5*D+a6*F
dF/dt = a7*S+a8*D+a9*F
t = [1 2 3 4 5]
S = [17710 18445 20298 22369 24221]
D = [1357.33 1431.92 1448.94 1388.33 1468.95]
F = [104188 104792 112097 123492 140051]
How to find these coefficients (a1,..., a9) of an ODE using Matlab?
I can't spend too much time on this, but basically you need to use math to reduce the equation to something more meaningful:
your equation is of the order
dx/dt = A*x
ergo the solution is
x(t-t0) = exp(A*(t-t0)) * x(t0)
Thus
exp(A*(t-t0)) = x(t-t0) * Pseudo(x(t0))
Pseudo is the Moore-Penrose Pseudo-Inverse.
EDIT: Had a second look at my solution, and I didn't calculate the pseudo-inverse properly.
Basically, Pseudo(x(t0)) = x(t0)'*inv(x(t0)*x(t0)'), as x(t0) * Pseudo(x(t0)) equals the identity matrix
Now what you need to do is assume each time step (1 to 2, 2 to 3, 3 to 4) is an experiment (therefore t-t0=1), so the solution would be to:
1- Build your pseudo inverse:
xt = [S;D;F];
xt0 = xt(:,1:4);
xInv = xt0'*inv(xt0*xt0');
2- Get exponential result
xt1 = xt(:,2:5);
expA = xt1 * xInv;
3- Get the logarithm of the matrix:
A = logm(expA);
And since t-t0= 1, A is our solution.
And a simple proof to check
[t, y] = ode45(#(t,x) A*x,[1 5], xt(1:3,1));
plot (t,y,1:5, xt,'x')
You have a linear, coupled system of ordinary differential equations,
y' = Ay with y = [S(t); D(t); F(t)]
and you're trying to solve the inverse problem,
A = unknown
Interesting!
First line of attack
For given A, it is possible to solve such systems analytically (read the wiki for example).
The general solution for 3x3 design matrices A take the form
[S(t) D(t) T(t)].' = c1*V1*exp(r1*t) + c2*V2*exp(r2*t) + c3*V3*exp(r3*t)
with V and r the eigenvectors and eigenvalues of A, respectively, and c scalars that are usually determined by the problem's initial values.
Therefore, there would seem to be two steps to solve this problem:
Find vectors c*V and scalars r that best-fit your data
reconstruct A from the eigenvalues and eigenvectors.
However, going down this road is treaturous. You'd have to solve the non-linear least-squares problem for the sum-of-exponentials equation you have (using lsqcurvefit, for example). That would give you vectors c*V and scalars r. You'd then have to unravel the constants c somehow, and reconstruct the matrix A with V and r.
So, you'd have to solve for c (3 values), V (9 values), and r (3 values) to build the 3x3 matrix A (9 values) -- that seems too complicated to me.
Simpler method
There is a simpler way; use brute-force:
function test
% find
[A, fval] = fminsearch(#objFcn, 10*randn(3))
end
function objVal = objFcn(A)
% time span to be integrated over
tspan = [1 2 3 4 5];
% your desired data
S = [17710 18445 20298 22369 24221 ];
D = [1357.33 1431.92 1448.94 1388.33 1468.95 ];
F = [104188 104792 112097 123492 140051 ];
y_desired = [S; D; F].';
% solve the ODE
y0 = y_desired(1,:);
[~,y_real] = ode45(#(~,y) A*y, tspan, y0);
% objective function value: sum of squared quotients
objVal = sum((1 - y_real(:)./y_desired(:)).^2);
end
So far so good.
However, I tried both the complicated way and the brute-force approach above, but I found it very difficult to get the squared error anywhere near satisfyingly small.
The best solution I could find, after numerous attempts:
A =
1.216731997197118e+000 2.298119167536851e-001 -2.050312097914556e-001
-1.357306715497143e-001 -1.395572220988427e-001 2.607184719979916e-002
5.837808840775175e+000 -2.885686207763313e+001 -6.048741083713445e-001
fval =
3.868360951628554e-004
Which isn't bad at all :) But I would've liked a solution that was less difficult to find...

Finding local maximum between two peak or points using MATLAB

I have intensity points which is marked as pink in above plot, and these are stored in variable and is given as
intensity_info =[ 35.9349
46.4465
46.4790
45.7496
44.7496
43.4790
42.5430
41.4351
40.1829
37.4114
33.2724
29.5447
26.8373
24.8171
24.2724
24.2487
23.5228
23.5228
24.2048
23.7057
22.5228
22.0000
21.5210
20.7294
20.5430
20.2504
20.2943
21.0219
22.0000
23.1096
25.2961
29.3364
33.4351
37.4991
40.8904
43.2706
44.9798
47.4553
48.9324
48.6855
48.5210
47.9781
47.2285
45.5342
34.2310 ];
I also have information of point A, B and C which is calculated by :
[maxtab, mintab] = peakdet(intensity_info, 1); % maxtab has A and B information and
% mintab has C information
peakdet.m matlab code can be found here: (http://www.billauer.co.il/peakdet.html). I want to calculate point D (where there is sight increase in intensity value i.e. if we come down from point A intensity decreases but at point D there is slight increase in intensity). As seen from graph below point C can also lie in the left of point D and in this case if we come down from point B intensity decrease and at D there is slight increase in intensity. Intensity values for below graph below is given as:
intensity_info =[29.3424
39.4847
43.7934
47.4333
49.9123
51.4772
52.1189
51.6601
48.8904
45.0000
40.9561
36.5868
32.5904
31.0439
29.9982
27.9579
26.6965
26.7312
28.5631
29.3912
29.7496
29.7715
29.7294
30.2706
30.1847
29.7715
29.2943
29.5667
31.0877
33.5228
36.7496
39.7496
42.5009
45.7934
49.1847
52.2048
53.9123
54.7276
54.9781
55.0000
54.9781
54.7276
53.9342
51.4246
38.2512];
and Point A ,B and C calculated in same manner as above.
How can I calculate point D in these cases?
I'm not MATLAB literate, but if the 'tabs' are subtables, then perhaps you can manipulate them to create other subtables... something like (I repeat, illiterate)
left_of_graph = part of graph from A to C
right_of_graph = part of graph from C to B
left_delta = some fraction of the difference between A's y-value and C's y-value
right_delta = some fraction of the difference between C's y-value and B's y-value
[left_maxtab,left_mintab] = peakdet(left_of_graph,left_delta)
[right_maxtab,right_mintab] = peakdet(right_of_graph,right_delta)
I do have some experience with peak analysis, so I will say this will help, not answer, the problem. You can find all the peaks you want, but that doesn't mean the data is worth squinting at. Noise and imperfect resolution are real. Happy hunting!
PS You might also scan for all points higher than both neighbors in the whole band. That is gauranteed to miss none of the 'true' maxima, but to give you more 'false' maxima than you can count (although your data looks pretty smooth!).
The solution your looking for is a numerical method based on iterations,in your particular case bisection is the one who best suits cause others like uniform sequential search do not take an interval as an input.
This is the implementation for bisection:
function [ a, b, L ] = Bisection( f, a, b, e, d )
%[a,b] is the interval for your local maxima; e is the error for the result and d is the step(dx).
L = b - a;
while(L > e)
xa = ((a + b)/2) - d/2;
xb = ((a + b)/2) + d/2;
ya = subs(f,xa);
yb = subs(f,xb);
if(ya < yb)
a = xa;
else
b = xb;
end
L = b - a;
end
end
The method before is pretty efficient and straightforward to use, although there are others even better(in performance) like Fibonacci and Gold Section methods.
Cheers.
I have found the alternative solution. The extrema.m helped in finding Point D in above two garphs. The extrema.m can be downloaded from (http://www.mathworks.com/matlabcentral/fileexchange/12275-extrema-m-extrema2-m) and used in following way to find point D:
[ymax,imax,ymin,imin] = extrema(intensity_info);
figure;plot(x,intensity_info,x(imax),ymax,'g.',x(imin),ymin,'r.');