How to calculate center of gravity of pixels in an image? - matlab

This is my homework question:
Write HW3_func.m as follows:
function [cogR, cogC] = HW3_func ( f, i )
f: input grayscale image
i : intensity level to check
Function should find all the pixels in f with intensity of i. Then, return the center of gravity of those pixels as [cogR, cogC]. Center of gravity is computed as the average of the row and average of column. If no pixel == i, then return [0,0]
I don't understand how to calculate center of gravity. What I have done is:
Declare a matrix X with the same dimension as the image. Initialize it with all zeros
Find the position of the pixels with the given intensity in the input image and replace those positions in X with 1.
Am I on the right path?
This is what I have right now:
function [ cogR,cogC ] = HW3_func(f,i)
[r,c] = size(f)
X = zeros(r,c)
for k = 1:r
for j = 1:c
if f(k,j)==i
X(k,j)=1;
end
end
end
%disp(X)
cogR=centroid(X);
cogC=centroid(X,2);
disp(cogR)
disp(cogC)
end

You probably just want to use find(), e.g.
[row_indices, col_indices, values] = find(f==i)
The CoG coordinates are then, as you said, just the average of the row and column indices, which you now have in two vectors. See mean().

Related

mean value in a sphere

I'm trying to calculate the mean value of the pixels inside a circle. In the future this needs to be extended to 3D, but for now a 2D sollution would already help me out.
As can be seen in the image, some pixels are entirely inside the circle, but some are only partly inside the circle. The ones partly in the circle also need to contribute only partly to the mean value. The pixels are square. This will simplify the mathematics I hope.
I can calculate the distance from the pixelcorners to the central point, from this you can find the pixels enterly inside and enterly outside. The rest needs correction. But how to find this correction.
[edit] thanks to Heath Raftery the problem is solved! [/edit]
the integral of a circle with radius r
As an example: I want to know the average pixelvalue of pixels in this circle. I know it is 0.3425, since 34.25% of the circle has a value of 1 and the rest is 0.
Function to check what part of a pixel is in the circle:
function [ a ] = incirc( x,y,r )
%only handles the top right quadrant of a circle
if x<0||y<0,error('only positive x,y');end
%integral of sqrt(r^2-x^2) dx
F = #(x,r) (1/2)*(x*sqrt(r^2-x^2)+r^2*atan(x/sqrt(r^2-x^2)));
%find corner locations
x=[x-0.5,x+0.5];
y=[y-0.5,y+0.5];
d = sqrt(x.^2+y.^2); %distance to closed and furthest corner
if max(d)<r,a=1;return;end %inside circle
if min(d)>r,a=0;return;end %outside circle
%intersections with edges (r^2 = x^2+y^2)
inters = [sqrt(r^2-y(1)^2),sqrt(r^2-y(2)^2),sqrt(r^2-x(1)^2),sqrt(r^2-x(2)^2)]; %x(1) x(2) y(1) y(2)
%remove imaginary and out of range intersections
inters(imag(inters)~=0)=NaN;
inters(inters<1E-5)=NaN; %to find values that are zero
inters([~((x(1)<inters(1:2))&(inters(1:2)<x(2))),~((y(1)<inters(3:4))&(inters(3:4)<y(2)))])=NaN;
idx = find(~isnan(inters));
if numel(idx)~=2,error('need two intersections of circle with pixel');end
%check area of pixel inside circumference
if all(idx==[1,2]) %2 intersections on y-edge
a=(F(y(2),r)-F(y(1),r)) - x(1); %area
elseif all(idx==[3,4]) %2 intersections on x-edge
a=(F(x(2),r)-F(x(1),r)) - y(1); %area
elseif all(idx==[1,3]) %one intersection on y-edge one on x-edge (left&bottom)
a=(F(inters(1),r)-F(x(1),r))- (y(1)*(inters(1)-x(1)));
elseif all(idx==[2,4]) %one intersection on y-edge one on x-edge (top&right)
a=(inters(2)-x(1))+(F(x(2),r)-F(inters(2),r))-(y(1)*(x(2)-inters(2)));
else
error('geometry')
end
a=real(a);
if a<0||a>1
error('computational error');
end
end
Script to test the function
M = ones(100); %data
M(1:50,:)=0;
pos=[50.2,50];
r = 2;
%calculate what the result should be
h=50-pos(2)+0.5;
A=pi*r^2;
wedge = acos(h/r)/pi;
triangle = h*sqrt(r^2-h^2);
res=(A*wedge-triangle)/A
S=0;N=0;
for i = 1:size(M,1)
for j = 1:size(M,2)
x=abs(j-pos(1));
y=abs(i-pos(2));
n=incirc( x,y,r );
M_(i,j)=n;
S = S+M(i,j)*n;
N = N+n;
end
end
result = S/N
result = 0.3425
You can see the algorithm finds the part of the pixel in the circle.
The question is missing a question, but I'll assume that it's not how to calculate whether pixels are fully inside or outside the circle. That's a relatively simple task. That is, a pixel is fully inside if the furtherest corner of the pixel to the centre is less than a radius away from the centre, and a pixel is fully outside if the closest corner of the pixel to the centre is more than a radius away from the centre.
The question of what proportion of pixels on the circumference fall within the circumference is much trickier. There are two fundamental solutions:
Exact and hard.
Approximate and a bit easier.
In both cases, note the horizontal and vertical symmetry means only the top right quadrant need be considered.
Then, for (1), translate the circle centre to the origin (0, 0) and treat the circumference as the function y(x) = sqrt(r^2 - x^2). Then, the area of an overlapping pixel within the circle is the integral:
integral(y(x) - y0, from x0 to x1, with respect to x)
where y0 is the bottom coordinate of the pixel, x0 is the left coordinate and x1 is the right coordinate.
This integral can be solved exactly with a trigonometric identity and a trigonometric substitution.
For (2), just generate a set of random points within the pixel and count how many of them fall within the circumference. As the set gets larger, the proportion of points that fall within the circumference to the count of all point approaches the proportion of the pixel within the circumference.
You can use inpolygon, to get the indices which lie inside the circle, once you have those indices you can get your pixels and do what you want.
M = rand(100); %data
[nx,ny] = size(M) ;
[X,Y] = meshgrid(1:ny,1:nx) ;
pos=[20,20];
r = 5;
phi=linspace(0,2*pi,100);
imagesc(M);
axis image
hold on
plot(pos(1),pos(2),'rx')
xc = pos(1)+r*sin(phi) ;
yc = pos(2)+r*cos(phi) ;
plot(xc,yc,'-r');
% hold off
%% get indices which are inside the circle
idx = inpolygon(X(:),Y(:),xc,yc) ;
xi = X(idx) ; yi = Y(idx) ;
plot(xi,yi,'.r')
mypixels = M(idx) ;
You can also use rangesearch to get the points lying within the given radius of the circle. As below:
M = rand(100); %data
[nx,ny] = size(M) ;
[X,Y] = meshgrid(1:ny,1:nx) ;
pos=[20,20];
r = 5;
phi=linspace(0,2*pi,100);
imagesc(M);
axis image
hold on
plot(pos(1),pos(2),'rx')
xc = pos(1)+r*sin(phi) ;
yc = pos(2)+r*cos(phi) ;
plot(xc,yc,'-r');
% hold off
%% Use nearest neighbour search
idx = rangesearch([X(:),Y(:)],pos,r) ;
xi = X(idx{1}) ; yi = Y(idx{1}) ;
plot(xi,yi,'.r')
mypixels = M(idx{1}) ;

How to create a 3D matrix in MATLAB by rotating 2D matrix around its center column or center row?

I have a 2D MATLAB matrix, which is symmetric with respect to its center column. I want to rotate this matrix around its center column to produce a 3D matrix representing an object with a cylindrical symmetry.
The same thing I want to do with a different matrix, which is symmetric with respect to its center row. (This time I want to rotate it around its center row to produce the 3D matrix).
What I had in mind is to generalize to 3D the idea given in the link:
How to create a 2D image by rotating 1D vector of numbers around its center element?
But not knowing MATLAB well enough it is not a so straight forward task for me.
Can someone help please?
I just modified the accepted answer to 3D:
% generate symetric matrix
A = zeros(11,31);
A(4:8,10:22) = repmat([1:7 6:-1:1],[5 1]);
% symmetric x axis
n = floor(size(A,2)/2);
% A vector of distance (measured in pixels) from the center of vector V to each element of V
[r,y] = meshgrid([n:-1:0, 1:n],1:size(A,1));
% Now find the distance of each element of a square 2D matrix from it's centre. #(x,y)(sqrt(x.^2+y.^2)) is just the Euclidean distance function.
ri = sqrt( bsxfun( #(x,y)x.^2+y.^2,r,permute(r,[1 3 2]) ) );
yi = repmat(y,[1 1 size(A,2)]);
% Now use those distance matrices to interpole V
obj = interp2(r(:,1:n+1),y(:,1:n+1),A(:,1:n+1),ri,yi,'nearest');
obj(isnan(obj)) = 0;
% show
[xg,yg,zg] = meshgrid(1:size(obj,2),1:size(obj,1),1:size(obj,3));
scatter3(xg(:),yg(:),zg(:),10,obj(:)+1,'filled')
axis equal
UPDATE - if you don't want to use interp2 you can do:
obj = interp1(r(1,1:n+1).',A(:,1:n+1).',ri(1,:,:),'nearest');
obj = permute(obj,[4,3,2,1]);
obj(isnan(obj)) = 0;

Centroid calculation for a connected component in 3D volume using Matlab

I am trying to implement brain tumor segmentation on 3D brain MRI(.mha data type).
After preliminary segmentation, I am applying 26-neighbor connected component algorithm(using bwconncomp) to obtain the largest connected component by obtaining the component with the largest volume, following which I need to calculate the centroid of the resultant component.
I am not sure if my method of calculating the largest connected component and the centroid is correct, because the centroid obtained and its nearby voxels all have value 0.
Also I am having confusion with the representation of 3D voxel coordinates. For eg. if centroid=(x,y,z), does it correspond to x=row,y=column and z=2D slice?
Any help would be appreciated. Below is my code with the relevant part.
CC=bwconncomp(Ibin,26); %Input Black & White 3D data of size 240x240x155
Pixelid=regionprops(CC,'PixelIdxList');
[prow pcol]=size(Pixelid);
maxval=numel(Pixelid(1).PixelIdxList);
index=1;
for i=1:prow
number=numel([Pixelid(i).PixelIdxList]);
if (number>maxval) %calculating the component with max number of voxels
maxval=number;
index=i;
end
end
for i=1:prow
if i~=index
Ibin(Pixelid(i).PixelIdxList)=0;
end
end
CC1=bwconncomp(Ibin,26);
Cent=regionprops(CC1,'Centroid');
I changed your code to the following:
CC=bwconncomp(Ibin,26);
PixelIdxList = CC.PixelIdxList;
maxval = numel(PixelIdxList{1});
index = 1;
for ii = 1:length(PixelIdxList)
number = numel(PixelIdxList{ii});
if number > maxval
maxval = number;
index = ii;
end
end
[y,x,z] = ind2sub(size(Ibin),PixelIdxList{index})
centroid = [mean(x), mean(y), mean(z)];
bwconncomp already gives you a PixelIdxList so you don't have to use regionprops. The PixelIdxList lists pixels by their linear indices, so you have to convert them into subscripts to get x, y, and z coordinates. The first dimension in MATLAB matrix represents y coordinates, and second dimension represents x, while the third dimension represents z. Centroid is calculated by taking the mean x, y, and z coordinates of all the pixels contained in the object.

Efficient inpaint with neighbouring pixels

I am implementing a simple algorithm to do in-painting on a "damaged" image. I have a predefined mask that specifies the area which needs to be fixed. My strategy is to start at the border of the masked area and in-paint each pixel with the central mean of its neighboring non-zero pixels, repeating until there's no unknown pixels left.
function R = inPainting(I, mask)
H = [1 2 1; 2 0 2; 1 2 1];
R = I;
n = 1;
[row,col,~] = find(~mask); %Find zeros in mask (area to be inpainted)
unknown = horzcat(row, col)';
while size(unknown,2) > 0
new_unknown = [];
new_R = R;
for u = unknown
r = u(1);
c = u(2);
nb = R(max((r-n), 1):min((r+n), end), max((c-n),1):min((c+n),end));
nz = nb~=0;
nzs = sum(nz(:));
if nzs ~= 0 %We have non-zero neighbouring pixels. In-paint with average.
new_R(r,c) = sum(nb(:)) / nzs;
else
new_unknown = horzcat(new_unknown, u);
end
end
unknown = new_unknown;
R = new_R;
end
This works well, but it's not very efficient. Is it possible to vectorize such an approach, using mostly matrix operations? Does someone know of a more efficient way to implement this algorithm?
If I understand your problem statement, you are given a mask and you wish to fill in these pixels in this mask with the mean of the neighbourhood pixels that surround each pixel in the mask. Another constraint is that the image is defined such that any pixels that belong to the mask in the same spatial locations are zero in this mask. You are starting from the border of the mask and are propagating information towards the innards of the mask. Given this algorithm, there is unfortunately no way you can do this with standard filtering techniques as the current time step is dependent on the previous time step.
Image filtering mechanisms, like imfilter or conv2 can't work here because of this dependency.
As such, what I can do is help you speed up what is going on inside your loop and hopefully this will give you some speed up overall. I'm going to introduce you to a function called im2col. This is from the image processing toolbox, and given that you can use imfilter, we can use this function.
im2col creates a 2D matrix such that each column is a pixel neighbourhood unrolled into a single vector. How it works is that each pixel neighbourhood in column major order is grabbed, so we get a pixel neighbourhood at the top left corner of the image, then move down one row, and another row and we keep going until we reach the last row. We then move one column over and repeat the same process. For each pixel neighbourhood that we have, it gets unrolled into a single vector, and the output would be a MN x K matrix where you have a neighbourhood size of M x N for each pixel neighbourhood and there are K neighbourhoods.
Therefore, at each iteration of your loop, we can unroll the current inpainted image's pixel neighbourhoods into single vectors, determine which pixel neighborhoods are non-zero and from there, determine how many zero values there are for each of these selected pixel neighbourhood. After, we compute the mean for these non-zero columns disregarding the zero elements. Once we're done, we update the image and move to the next iteration.
What we're going to need to do first is pad the image with a 1 pixel border so that we're able to grab neighbourhoods that extend beyond the borders of the image. You can use padarray, also from the image processing toolbox.
Therefore, we can simply do this:
function R = inPainting(I, mask)
R = double(I); %// For precision
n = 1;
%// Change - column major indices
unknown = find(~mask); %Find zeros in mask (area to be inpainted)
%// Until we have searched all unknown pixels
while numel(unknown) ~= 0
new_R = R;
%// Change - take image at current iteration and
%// create columns of pixel neighbourhoods
padR = padarray(new_R, [n n], 'replicate');
cols = im2col(padR, [2*n+1 2*n+1], 'sliding');
%// Change - Access the right pixel neighbourhoods
%// denoted by unknown
nb = cols(:,unknown);
%// Get total sum of each neighbourhood
nbSum = sum(nb, 1);
%// Get total number of non-zero elements per pixel neighbourhood
nzs = sum(nb ~= 0, 1);
%// Replace the right pixels in the image with the mean
new_R(unknown(nzs ~= 0)) = nbSum(nzs ~= 0) ./ nzs(nzs ~= 0);
%// Find new unknown pixels to look at
unknown = unknown(nzs == 0);
%// Update image for next iteration
R = new_R;
end
%// Cast back to the right type
R = cast(R, class(I));

How to assign values to particular point in 3D rectangle in matlab

I want to animate the varying temperature gradient in 3D rectangle. I have temperature values at specified points in a real container. I am not been able to figure out how to pass the temperature values as specified point in 3D container in Matlab.Lets say I have 10 points on one side of rectangle and same as on other remaining five sides.
any suggestions
Let's assume that your rectangular container is oriented in space with one vertex at (0,0,0) and sides along x, y and z axis. And you have set of points each with 3-point coordinate (x,y,z). In MATLAB it's probably represented by 3 vectors X, Y and Z. You also have a vector of temperature values (say T) for each points.
Then you can use SCATTER3 function to plot the points:
scatter3(X,Y,Z,[],T,'.')
You can change the size of points substituting the empty parameter with a value.
If you have point only on the faces of the container, it means one of the coordinate is either 0 or the size of corresponding side.
the colors are controlled by current color map. You can change it with COLORMAP function. For temperature the good one is 'hot' or 'cool'. Show the color scale with COLORBAR.
Here is an example with random data:
%# random coordinates
X = rand(60,1,1);
Y = rand(60,1,1);
Z = rand(60,1,1);
%# put the points into faces
X(1:10) = 0;
X(10:20) = 1;
Y(20:30) = 0;
Y(30:40) = 1;
Z(40:50) = 0;
Z(50:60) = 1;
%# temperature vector
T = rand(60,1,1) * 100;
%# plot
scatter3(X,Y,Z,[],T,'.')
grid off
box on
colormap hot
colorbar
Temp=zeros(10,10,10);
Temp(5,2,4)=25;