I have to perform this operation:
N = A'*P*A
The structure of the P matrix is block diagonal while the A matrix is largely sparse (also in a banded structure). The multiplication is performed in blocks. But the problem is storage.
The N matrix is too huge to store in full (out of memory when trying to allocate). So, I want to store in a sparse fashion. While the sparse command generates only the values in row,column format, can it be applied to store banded matrices with the row column as the index of the block?
I have tried spalloc given in the this question but it hasnt helped storing the row and index of the block.
Thank you.
Image for A P A' formation
The problem lies in the blocks. The blocks are themselves sparse. So is it possible to make blocks as sparse matrices themselves while saving.
So, if a block has a row = 1 and col = 1, then can this be done?
N(row,col) = sparse(A'*P*A)
There may be some additional tricks to play but the first thing to try is to make sure the full matrix N is never created in memory. The immediate problem is that if you call sparse(A'*P*A) then you multiple A'*P then (A'*P)*A and only then do you make it sparse and take out the zeros. Right before making it sparse, the entire non-sparse matrix representation of N is in memory. To force MATLAB to be smarter do the following:
SA = sparse(A);
N = SA'*sparse(P)*SA;
whos N
You should see that N is sparse but, more importantly, each multiplication result is sparse as well because you are multiplying a sparse matrix times a sparse matrix.
Related
I have a 40x43 matrix and I would like to use this matrix a building block to generate larger matrix.
I want to generate a structure like the image attached and the building block is the 40x43 matrix. I tried using [A zeros(20,43); zeros(20,43) A] but as I had guessed, the horzcat did't work. I would ideally like to use this block 1000 times to extend the structure of matrix. Could anyone tell me an efficient way to concatenate the small matrix?
Try using kron. This performs what is known as the Kronecker product such that for two matrices A and B, the result is:
In this case, we can replicate what you want exactly by setting A to be the identity matrix of size 1000 x 1000 and B to be the matrix you want to replicate. However, to promote computational savings and memory usage, make sure you use the sparse version of the identity matrix. This will convert the output matrix to sparse form. If you want to replicate this 1000 times, you are creating a 40000 x 43000 matrix and this requires 13.76 GB of memory and you probably don't have enough memory available for this matrix. Since most of the elements are zero, use the sparse version instead:
N = 1000;
B = kron(speye(N), A);
I have a sparse 5018x5018 matrix in MATLAB, which has about 100k values set to 1 (i.e., about 99.6% empty).
I'm trying to flip roughly 5% of those zeros to ones (i.e., about 1.25m entries). I have the x and y indices in the matrix I want to flip.
Here is what I have done:
sizeMat=size(network);
idxToReplace=sub2ind(sizeMat,x_idx, y_idx);
network(idxToReplace) = 1;
This is incredibly slow, in particular the last line. Is there any way to make this operation run noticeably faster, preferably without using mex files?
This should be faster:
idxToReplace=sparse(x_idx,y_idx,ones(size(x_idx),size(matrix,1),size(matrix,2)); % Create a sparse with ones at locations
network=network+idxToReplace; % Add the two matrices
I think your solution is very slow because you create a 1.26e6 logical array with your points and then store them in the sparse matrix. In my solution, you only create a sparse matrix and just sum the two.
I am filling a sparse matrix P (230k,290k) with values coming from a text file which I read line by line, here is the (simplified) code
while ...
C = textscan(text_line,'%d','delimiter',',','EmptyValue', 0);
line_number = line_number+1;
P(line_number,:)=C{1};
end
the problem I have is that while at the beginning the
P(line_number,:)=C{1};
statement is fast, after a few thousands lines become exterely slow, I guess because Matlab need to find the memory space to allocate every time. Is there a way to pre-allocate memory with sparse matrixes? I don't think so but maybe I am missing something. Any other advise which can speed up the operation (e.g. having a lot of free RAM can make the difference?)
There's a sixth input argument to sparse that tells the number of nonzero elements in the matrix. That's used by Matlab to preallocate:
S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an
m-by-n sparse matrix such that S(i(k),j(k)) = s(k), with space
allocated for nzmax nonzeros.
So you could initiallize with
P = sparse([],[],[],230e3,290e3,nzmax);
You can make a guess about the number of nonzeros (perhaps checking file size?) and use that as nzmax. If it turns you need more nonzero elements in the end, Matlab will preallocate on the fly (slowly).
By far the fastest way to generate a sparse matrix wihtin matlab is to load all the values in at once, then generate the sparse matrix in one call to sparse. You have to load the data and arrange it into vectors defining the row and column indices and values for each filled cell. You can then call sparse using the S = sparse(i,j,s,m,n) syntax.
I have N kx1 sparse vectors and I need to multiply each of them by their transpose, creating N square matrices, which I then have to sum over. The desired output is a k by k matrix. I have tried doing this in a loop and using arrayfun, but both solutions are too slow. Perhaps one of you can come up with something faster. Below are specific details about the best solution I've come up with.
mdev_big is k by N sparse matrix, containing each of the N vectors.
fun_sigma_i = #(i) mdev_big(:,i)*mdev_big(:,i)';
sigma_i = arrayfun(fun_sigma_i,1:N,'UniformOutput',false);
sigma = sum(reshape(full([sigma_i{:}]),k,k,N),3);
The slow part of this process is making sigma_i full, but I cannot reshape it into a 3d array otherwise. I've also tried cat instead of reshape (slower), ndSparse instead of full (way slower), and making fun_sigma_i return a full matrix rather than a sparse one (slower).
Thanks for the help! ,
I have to create a matlab matrix that is much bigger that my phisical memory, and i want to take advantage of the sparsity.
This matrix is really really sparse [say N elements in an NxN matrix], and my ram is enought for this. I create the matrix in this way:
A=sparse(zeros(N));
but it goes out of memory.
Do you know the right way to create this matrix?
zeros(N) is creating an NxN matrix, which is not sparse, hence you are running out of memory. Your code is equivalent to
temp = zeros(N)
A = sparse(temp)
Just do sparse(N,N).
Creating an all zeros sparse matrix, and then modifying it is extremely inefficient in matlab.
Instead of doing something like:
A = sparse(N,N) % or even A = sparse([],[],[],N,N,N)
A(1:N,7) = 1:N
It is much more efficient to construct the matrix in triplet form. That is,
construct the column and row indices and the nonzero entries first, then
form the matrix. For example,
i = 1:N;
j = 7*ones(1,N);
x = 1:N;
A = sparse(i,j,x,N,N);
I'd actually recommend the full syntax of sparse([],[],[],N,N,N).
It's useful to preallocate if you know the maximum number of nonzero elements as otherwise you'll get reallocs when you insert new elements.