Shorten this in Matlab - matlab

Let x = [1,...,t] be a vector with t components and A and P arrays. I asked myself whether there is any chance to shorten this, as it looks very cumbersome:
for n = 1:t
for m = 1:n
H(n,m) = A(n,m) + x(n) * P(n,m)
end
end

My suggestion: bsxfun(#times,x,P) + A;
e.g.
A = rand(3);
P = rand(3);
x = rand(3,1);
for n = 1:3
for m = 1:3
H(n,m) = A(n,m) + x(n) * P(n,m);
end
end
H2 = bsxfun(#times,x,P) + A;
%//Check that they're the same
all(H(:) == H2(:))
returns
ans = 1
EDIT:
Amro is right! To make the second loop is dependent on the first use tril:
H2 = tril(bsxfun(#times,x,P) + A);
Are the matrices square btw because that also creates other problems

tril(A + P.*repmat(x',1,t))
EDIT. This is for when x is row vector.
If x is a column vector, then use tril(A + P.*repmat(x,t,1))
If your example code is correct, then H(i,j) = 0 for any j > i, e.g. X(1,2).
For t = 3 for example, you would have.
H =
'A(1,1) + x(1) * P(1,1)' [] []
'A(2,1) + x(2) * P(2,1)' 'A(2,2) + x(2) * P(2,2)' []
'A(3,1) + x(3) * P(3,1)' 'A(3,2) + x(3) * P(3,2)' 'A(3,3) + x(3) * P(3,3)'

Like I pointed out in the comments, unless it was a typo mistake, the second for-loop counter depends on that of the first for-loop...
In case it was intentional, I came up with the following solution:
% some random data
t = 10;
x = (1:t)';
A = rand(t,t);
P = rand(t,t);
% double for-loop
H = zeros(t,t);
for n = 1:t
for m = 1:n
H(n,m) = A(n,m) + x(n) * P(n,m);
end
end
% vectorized using linear-indexing
[a,b] = ndgrid(1:t,1:t);
idx = sub2ind([t t], nonzeros(tril(a)), nonzeros(tril(b)));
xidx = nonzeros(tril(a));
HH = zeros(t);
HH(tril(true(t))) = A(idx) + x(xidx).*P(idx);
% check the results are the same
assert(isequal(H,HH))
I like #Dan's solution better. The only advantage here is that I do not compute unnecessary values (since the upper half of the matrix is zeros), while the other solution computes the full matrix and then cut back the extra stuff.

A good start would be
H = A + x*P
This may not be a working solution, you'll have to check conformability of arrays and vectors, and make sure that you're using the correct multiplication, but this should be enough to point you in the right direction. If you're new to Matlab be aware that vectors can be either 1xn or nx1, ie row and column vectors are different species unlike in so many programming languages. If x isn't what you want on the rhs, you may want its transpose, x' in Matlab.
Matlab is, from one point of view, an array language, explicit loops are often unnecessary and frequently not even a good way to go.

Since the range for second loop is 1:n, you can take the lower triangle parts of matrices A and P for calculation
H = bsxfun(#times,x(:),tril(P)) + tril(A);

Related

Memory usage by Matlab

I'm running a Matlab code in the HPC of my university. I have two versions of the code. The second version, despite generating a smaller array, seems to require more memory. I would like your help to understand if this is in fact the case and why.
Let me start from some preliminary lines:
clear
rng default
%Some useful components
n=7^4;
vectors{1}=[1,20,20,20,-1,Inf,-Inf];
vectors{2}=[-19,19,19,19,-20,Inf,-Inf];
vectors{3}=[-19,0,0,0,-20,Inf,-Inf];
vectors{4}=[-19,0,0,0,-20,Inf,-Inf];
T_temp = cell(1,4);
[T_temp{:}] = ndgrid(vectors{:});
T_temp = cat(4+1, T_temp{:});
T = reshape(T_temp,[],4); %all the possible 4-tuples from vectors{1}, ..., vectors{4}
This is the first version 1 of the code: I construct the matrix D1 listing all possible pairs of unordered rows from T
indices_pairs=pairIndices(n);
D1=[T(indices_pairs(:,1),:) T(indices_pairs(:,2),:)];
This is the second version of the code: I construct the matrix D2 listing a random draw of m=10^6 unordered pairs of rows from T
m=10^6;
p=n*(n-1)/2;
random_indices_pairs = randperm(p, m).';
[C1, C2] = myind2ind (random_indices_pairs, n);
indices_pairs=[C1 C2];
D2=[T(indices_pairs(:,1),:) T(indices_pairs(:,2),:)];
My question: when generating D2 the HPC goes out of memory. When generating D1 the HPC works fine, despite D1 being a larger array than D2. Why is that the case?
These are complementary functions used above:
function indices = pairIndices(n)
[y, x] = find(tril(logical(ones(n)), -1)); %#ok<LOGL>
indices = [x, y];
end
function [R , C] = myind2ind(ii, N)
jj = N * (N - 1) / 2 + 1 - ii;
r = (1 + sqrt(8 * jj)) / 2;
R = N -floor(r);
idx_first = (floor(r + 1) .* floor(r)) / 2;
C = idx_first-jj + R + 1;
end

Populating matrix with for loop depending if index is even or odd

This is a part of a PDE problem that I'm trying to solve numerically. I know that my calculations for the entries are correct, however I'm struggling to assemble the matrix properly in Matlab. The first rows are correct, however the two last rows are not correct since I'm missing the elements a_{11,10}, a_{10,10} and a_{10,11}. I'm missing these because my loop never accesses them. For for example a_{10,10} requires i = 10, which is an even number, however my M = 11 in this case and i only goes from 1 to 9. If I make my for loop go from 1:11, I get out of bounds error since I'm using indecies i+1 and i+2.
The same goes for the vector b. How do I fill in all my b_i's if i only goes to 9 but the vector is 11 elements long?
Any suggestion on how to fix this? I've tried making separate for loops for the odd and even case but I'm still having the same problem of entries missing due to using indecies i+1 and i+2. Or do I manually have to enter (hardcode) these indecies outside of the foor loop?
Here is my loop:
h = 1/10;
x = 0:h:1;
M = length(x);
% Assemble stiffness matrix A and load vector b.
A = zeros(M,M);
b = zeros(M,1);
for i = 1:M-2
if rem(i,2) ~= 0 % if i is odd
A(i,i) = A(i,i) + 1/(3*h);
b(i) = b(i) + f(x(i)) * (-2)*h/3;
elseif rem(i,2) == 0 % if i is even
A(i,i) = A(i,i) + 3/(3*h);
A(i+2,i) = A(i+2,i) - 8/(3*h);
A(i,i+2) = A(i,i+2) - 8/(3*h);
b(i) = b(i) + f(x(i)) * 8*h/3;
end
A(i+1,i) = A(i+1,i) + 2/(3*h);
A(i,i+1) = A(i,i+1) - 3/(3*h);
end
% Enforce the boundary conditions
A(1,1) = 1.e4;
A(end,end) = 1.e4;
I think you can simply pad matrix A with two extra rows and columns, and remove them later:
Look at the following modified version of your code:
h = 1/10;
x = 0:h:1;
M = length(x);
% Assemble stiffness matrix A and load vector b.
%Initialize A to have two more rows and columns.
A = zeros(M+2);
b = zeros(M,1);
for i = 1:M
if rem(i,2) ~= 0 % if i is odd
A(i,i) = A(i,i) + 1/(3*h);
b(i) = b(i) + f(x(i)) * (-2)*h/3;
elseif rem(i,2) == 0 % if i is even
A(i,i) = A(i,i) + 3/(3*h);
A(i+2,i) = A(i+2,i) - 8/(3*h);
A(i,i+2) = A(i,i+2) - 8/(3*h);
b(i) = b(i) + f(x(i)) * 8*h/3;
end
A(i+1,i) = A(i+1,i) + 2/(3*h);
A(i,i+1) = A(i,i+1) - 3/(3*h);
end
%Remove two rows and columns form matrix A.
A = A(1:end-2, 1:end-2);
% Enforce the boundary conditions
A(1,1) = 1.e4;
A(end,end) = 1.e4;
function z = f(t)
% Stab f functionn - f(x) return x
z = t;
end
I hope the code behaves as you expected (it's not so clear what value you are expecting to read outside the bounds of A)...

Matlab : Vectorize technics in 3 dimensions matrix

I actually vectorizing one of my code and I have some issues.
This is my initial code:
CoordVorBd = random(N+1,3)
CoordCP = random(N,3)
v = random(1,3)
for i = 1 : N
for j = 1 : N
ri1j = (-CoordVorBd (i,:) + CoordCP(j,:));
vij(i,j,:) = cross(v,ri1j))/(norm(ri1j)
end
end
I have start to vectorize that creating some matrix that contains 3*1 Vectors. My size of matrix is N*N*3.
CoordVorBd1(1:N,:) = CoordVorBd(2:N+1,:);
CoordCP_x= CoordCP(:,1);
CoordCP_y= CoordCP(:,2);
CoordCP_z= CoordCP(:,3);
CoordVorBd_x = CoordVorBd([1:N],1);
CoordVorBd_y = CoordVorBd([1:N],2);
CoordVorBd_z = CoordVorBd([1:N],3);
CoordVorBd1_x = CoordVorBd1(:,1);
CoordVorBd1_y = CoordVorBd1(:,2);
CoordVorBd1_z = CoordVorBd1(:,3);
[X,Y] = meshgrid (1:N);
ri1j_x = (-CoordVorBd_x(X) + CoordCP_x(Y));
ri1j_y = (-CoordVorBd_y(X) + CoordCP_y(Y));
ri1j_z = (-CoordVorBd_z(X) + CoordCP_z(Y));
ri1jmat(:,:,1) = ri1j_x(:,:);
ri1jmat(:,:,2) = ri1j_y(:,:);
ri1jmat(:,:,3) = ri1j_z(:,:);
vmat(:,:,1) = ones(N)*v(1);
vmat(:,:,2) = ones(N)*v(2);
vmat(:,:,3) = ones(N)*v(3);
This code works but is heavy in terms of variable creation. I did'nt achieve to apply the vectorization to all the matrix in one time.
The formule like
ri1jmat(X,Y,1:3) = (-CoordVorBd (X,:) + CoordCP(Y,:));
doesn't work...
If someone have some ideas to have something cleaner.
At this point I have a N*N*3 matrix ri1jmat with all my vectors.
I want to compute the N*N rij1norm matrix that is the norm of the vectors
rij1norm(i,j) = norm(ri1jmat(i,j,1:3))
to be able to vectorize the vij matrix.
vij(:,:,1:3) = (cross(vmat(:,:,1:3),ri1jmat(:,:,1:3))/(ri1jmatnorm(:,:));
The cross product works.
I tried numbers of method without achieve to have this rij1norm matrix without doing a double loop.
If someone have some tricks, thanks by advance.
Here's a vectorized version. Note your original loop didn't include the last column of CoordVorBd, so if that was intentional you need to remove it from the below code as well. I assumed it was a mistake.
CoordVorBd = rand(N+1,3);
CoordCP = rand(N,3);
v = rand(1,3);
repCoordVor=kron(CoordVorBd', ones(1,size(CoordCP,1)))'; %based on http://stackoverflow.com/questions/16266804/matlab-repeat-every-column-sequentially-n-times
repCoordCP=repmat(CoordCP, size(CoordVorBd,1),1); %repeat matrix
V2=-repCoordVor + repCoordCP; %your ri1j
nrm123=sqrt(sum(V2.^2,2)); %vectorized norm for each row
vij_unformatted=cat(3,(v(:,2).*V2(:,3) - V2(:,2).*v(:,3))./nrm123,(v(:,3).*V2(:,1) - V2(:,3).*v(:,1))./nrm123,(v(:,1).*V2(:,2) - V2(:,1).*v(:,2))./nrm123); % cross product, expanded, and each term divided by norm, could use bsxfun(#rdivide,cr123,nrm123) instead, if cr123 is same without divisions
vij=permute(reshape( vij_unformatted,N,N+1,3),[2,1,3]); %reformat to match your vij
Here is another way to do it using arrayfun
% Define a meshgrid of indices to run over
[I, J] = meshgrid(1:N, 1:(N+1));
% Calculate ril for each index
rilj = arrayfun(#(x, y) -CoordVorBd (y,:) + CoordCP(x,:), I, J, 'UniformOutput', false);
%Calculate vij for each point
temp_vij1 = arrayfun(#(x, y) cross(v, rilj{x, y}) / norm(rilj{x, y}), J, I, 'UniformOutput', false);
%Reshape the matrix into desired format
temp_vij2 = cell2mat(temp_vij1);
vij = cat(3, temp_vij2(:, 1:3:end), temp_vij2(:, 2:3:end), temp_vij2(:, 3:3:end));

Computing Mahalanobis Distance Between Set of Points and Set of Reference Points

I have an n x p matrix - mX which is composed of n points in R^p.
I have another m x p matrix - mY which is composed of m reference points in R^p.
I would like to create an n x m matrix - mD which is the Mahalanobis Distance matrix.
D(i, j) means the Mahalanobis Distance between point i in mX, mX(i, :) and point j in mY, mY(j, :).
Namely, is computes the following:
mD(i, j) = (mX(i, :) - mY(j, :)) * inv(mC) * (mX(i, :) - mY(j, :)).';
Where mC is the given Mahalanobis Distance PSD Matrix.
It is easy to be done in a loop, is there a way to vectorize it?
Namely, is the a function which its inputs are mX, mY and mC and its output is mD and fully vectorized without using any MATLAB toolbox?
Thank You.
Approach #1
Assuming infinite resources, here's one vectorized solution using bsxfun and matrix-multiplication -
A = reshape(bsxfun(#minus,permute(mX,[1 3 2]),permute(mY,[3 1 2])),[],p);
out = reshape(diag(A*inv(mC)*A.'),n,m);
Approach #2
Here's a comprise solution trying to reduce the loop complexity -
A = reshape(bsxfun(#minus,permute(mX,[1 3 2]),permute(mY,[3 1 2])),[],p);
imC = inv(mC);
out = zeros(n*m,1);
for ii = 1:n*m
out(ii) = A(ii,:)*imC*A(ii,:).';
end
out = reshape(out,n,m);
Sample run -
>> n = 3; m = 4; p = 5;
mX = rand(n,p);
mY = rand(m,p);
mC = rand(p,p);
imC = inv(mC);
>> %// Original solution
for i = 1:n
for j = 1:m
mD(i, j) = (mX(i, :) - mY(j, :)) * inv(mC) * (mX(i, :) - mY(j, :)).'; %//'
end
end
>> mD
mD =
-8.4256 10.032 2.8929 7.1762
-44.748 -4.3851 -13.645 -9.6702
-4.5297 3.2928 0.11132 2.5998
>> %// Approach #1
A = reshape(bsxfun(#minus,permute(mX,[1 3 2]),permute(mY,[3 1 2])),[],p);
out = reshape(diag(A*inv(mC)*A.'),n,m); %//'
>> out
out =
-8.4256 10.032 2.8929 7.1762
-44.748 -4.3851 -13.645 -9.6702
-4.5297 3.2928 0.11132 2.5998
>> %// Approach #2
A = reshape(bsxfun(#minus,permute(mX,[1 3 2]),permute(mY,[3 1 2])),[],p);
imC = inv(mC);
out1 = zeros(n*m,1);
for ii = 1:n*m
out1(ii) = A(ii,:)*imC*A(ii,:).'; %//'
end
out1 = reshape(out1,n,m);
>> out1
out1 =
-8.4256 10.032 2.8929 7.1762
-44.748 -4.3851 -13.645 -9.6702
-4.5297 3.2928 0.11132 2.5998
Instead if you had :
mD(j, i) = (mX(i, :) - mY(j, :)) * inv(mC) * (mX(i, :) - mY(j, :)).';
The solutions would translate to the versions listed next.
Approach #1
A = reshape(bsxfun(#minus,permute(mY,[1 3 2]),permute(mX,[3 1 2])),[],p);
out = reshape(diag(A*inv(mC)*A.'),m,n);
Approach #2
A = reshape(bsxfun(#minus,permute(mY,[1 3 2]),permute(mX,[3 1 2])),[],p);
imC = inv(mC);
out1 = zeros(m*n,1);
for i = 1:n*m
out(i) = A(i,:)*imC*A(i,:).'; %//'
end
out = reshape(out,m,n);
Sample run -
>> n = 3; m = 4; p = 5;
mX = rand(n,p); mY = rand(m,p); mC = rand(p,p); imC = inv(mC);
>> %// Original solution
for i = 1:n
for j = 1:m
mD(j, i) = (mX(i, :) - mY(j, :)) * inv(mC) * (mX(i, :) - mY(j, :)).'; %//'
end
end
>> mD
mD =
0.81755 0.33205 0.82254
1.7086 1.3363 2.4209
0.36495 0.78394 -0.33097
0.17359 0.3889 -1.0624
>> %// Approach #1
A = reshape(bsxfun(#minus,permute(mY,[1 3 2]),permute(mX,[3 1 2])),[],p);
out = reshape(diag(A*inv(mC)*A.'),m,n); %//'
>> out
out =
0.81755 0.33205 0.82254
1.7086 1.3363 2.4209
0.36495 0.78394 -0.33097
0.17359 0.3889 -1.0624
>> %// Approach #2
A = reshape(bsxfun(#minus,permute(mY,[1 3 2]),permute(mX,[3 1 2])),[],p);
imC = inv(mC);
out1 = zeros(m*n,1);
for i = 1:n*m
out1(i) = A(i,:)*imC*A(i,:).'; %//'
end
out1 = reshape(out1,m,n);
>> out1
out1 =
0.81755 0.33205 0.82254
1.7086 1.3363 2.4209
0.36495 0.78394 -0.33097
0.17359 0.3889 -1.0624
Here is one solution that eliminates one loop
function d = mahalanobis(mX, mY)
n = size(mX, 2);
m = size(mY, 2);
data = [mX, mY];
mc = cov(transpose(data));
dist = zeros(n,m);
for i = 1 : n
diff = repmat(mX(:,i), 1, m) - mY;
dist(i,:) = sum((mc\diff).*diff , 1);
end
d = sqrt(dist);
end
You would invoke it as:
d = mahalanobis(transpose(X),transpose(Y))
Reduce to L2
It seems that Mahalanobis Distance can be reduced to ordinary L2 distance if you are allowed to preprocess matrix mC and you are not afraid of numerical differences.
First of all, compute Cholesky decomposition of mC:
mR = chol(mC) % C = R^t * R, where R is upper-triangular
Now we can use these factors to reformulate Mahalanobis Distance:
(Xi-Yj) * inv(C) * (Xi-Yj)^t = || (Xi-Yj) inv(R) ||^2 = ||TXi - TYj||^2
where: TXi = Xi * inv(R)
TYj = Yj * inv(R)
So the idea is to transform points Xi, Yj to TXi, TYj first, and then compute euclidean distances between them. Here is the algorithm outline:
Compute mR - Cholesky factor of covariance matrix mC (takes O(p^3) time).
Invert triangular matrix mR (takes O(p^3) time).
Multiply both mX and mY by inv(mR) on the right (takes O(p^2 (m+n)) time).
Compute squared L2 distances between pairs of points (takes O(m n p) time).
Total time is O(m n p + (m + n) p^2 + p^3) versus original O(m n p^2). It should work faster when 1 << p << n,m. In such case step 4 would takes most of the time and should be vectorized.
Vectorization
I have little experience of MATLAB, but quite a lot of SIMD vectorization on x86 CPUs. In raw computations, it would be enough to vectorize along one sufficiently large array dimension, and make trivial loops for the other dimensions.
If you expect p to be large enough, it may probably be OK to vectorize along coordinates of points, and make two nested loops for i <= n and j <= m. That's similar to what #Daniel posted.
If p is not sufficiently large, you can vectorize along one of the point sequences instead. This would be similar to solution posted by #dpmcmlxxvi: you have to subtract single row of one matrix from all the rows of the second matrix, then compute squared norms of the resulting rows. Repeat n times (
or m times).
As for me, full vectorization (which means rewriting with matrix operations instead of loops in MATLAB) does not sound like a clever performance goal. Most likely partially vectorized solutions would be optimally fast.
I came to the conclusion that vectorizing this problem is not efficient. My best idea for vectorizing this problem would require m x n x p x p working memory, at least if everything is processed at once. This means with n=m=p=152 the code would already require 4GB Ram. At these dimensions, my system can run the loop in less than a second:
mD=zeros(size(mX,1),size(mY,1));
ImC=inv(mC);
for i=1:size(mX,1)
for j=1:size(mY,1)
d=mX(i, :) - mY(j, :);
mD(i, j) = (d) * ImC * (d).';
end
end

Matlab remove loop to calculate PT1

I am calculating PT1 behavior in Matlab using the input vector u:
u(20:50,1) = 2;
k = 0.8;
x=zeros(50,1);
for i=2:size(u,1)
x(i) = k*x(i-1) + (1-k)*u(i);
end
How can I remove the for loop to get the same result?
This is actually a first-order IIR filter, so you can use filter for that:
u(20:50, 1) = 2;
k = 0.8;
x = filter(1 - k, [1, -k], u);
If you write x(i) out for a couple of values, you'll see a pattern in it:
x(1) = 0; % since the loop starts at i=2
x(2) = k*x(1) + (1-k)*u(2)
= 0 + (1-k)*u(2)
x(3) = k*x(2) + (1-k)*u(3)
= k*(1-k)*u(2) + (1-k)*u(3)
x(4) = k*x(3) + (1-k)*u(4)
= k^2*(1-k)*u(2) + k*(1-k)*u(3) + (1-k)*u(4)
...
So you'll easily spot the pattern being:
x(i) = (1-k) * sum(k^(i-j)*u(j), j=2..i)
which is now an explicit function.
You could apply this to remove your loop, but in reality this explicit function itself must calculate a large sum. Doing this for every index of x takes probably more time than looping and re-using prior results.