ILP solvers with small memory footprint - boolean

I'm trying to solve a sequence-labelling problem by formulating it as an integer linear program (as an experiment to see how well doing it in that way works). I've already found some suggestions for solvers on SO but I would like to get some more fine-grained advice due to some constraints I'm under (yes, that pun was actually intended).
I'm running out of memory on more than half of my sequences due to their length while using COIN-OR although I see no reason I need to use so much memory for my problem at hand: This is a Boolean linear program, so I would theoretically need only one bit per feature. However, e.g. the COIN Open Solver Interface seems to be able to use only double values for e.g. defining constraints.
Are there any (free) ILP packages which are well-suited for either Boolean problems or at least for problems with a very small range of potential values?

CPLEX seems to be considered approximately the state of the art, and in my experience for hard ILPs it is often better than any free solver I found. Unfortunately, CPLEX is not free, except for academic users; IBM does offer free access to CPLEX for students and researchers at educational institutions, if you fit that description.

Related

Factors that Impact Translation Time

I have run across issues in developing models where the translation time (simulates quickly but takes far too long to translate) has become a serious issue and could use some insight so I can look into resolving this.
So the question is:
What are some of the primary factors that impact the translation time of a model and ideas to address the issue?
For example, things that may have an impact:
for loops vs a vectorized method - a basic model testing this didn't seem to impact anything
using input variables vs parameters
impact of annotations (e.g., Evaluate=true)
or tough luck, this is tool dependent (Dymola, OMEdit, etc.) :(
use of many connect() - this seems to be a factor (perhaps primary) as it forces translater to do all the heavy lifting
Any insight is greatly appreciated.
Clearly the answer to this question if naturally open ended. There are many things to consider when computation times may be a factor.
For distributed models (e.g., finite difference) the use of simple models and then using connect equations to link them in the appropriate order is not the best way to produce the models. Experience has shown that this method significantly increases the translation time to unbearable lengths. It is better to create distributed models in the same approach that is used the MSL Dynamic pipe (not exactly like it but similar).
Changing the approach as described is significantly faster in translational time (orders of magnitude for larger models, >~100,000 equations) than using connect statements as the number of distributed elements increases to larger numbers. This was tested using Dymola 2017 and 2017FD01.
Some related materials pointed out by others that may be useful for more information have been included below:
https://modelica.org/events/modelica2011/Proceedings/pages/papers/07_1_ID_183_a_fv.pdf
Scalable Test Suite : https://dx.doi.org/10.3384/ecp15118459

Growing memory usage in MATLAB

I use MATLAB for programming some meta-heuristics. Recently, I have been working on an algorithm for solving an industrial engineering problem. My problem with MATLAB is getting "out of memory" errors. Now I'm trying some suggestions from Mathworks and Stackoverflow (Hope they will work). However, there is one thing I did not understand.
During the run of the algorithm in MATLAB (it takes 4000-5000 cpu sec for a medium sized problem), even though I preallocate variables, code does not demand dynamic array resizing and does not add new variables, I observe that the memory usage of the algorithm grows continuously. The main function calls some other functions written by me. What could be the reason of increase of the memory usage?
The computer I use for the running of the algorithm has 8GBs of memory and win8 64bit installed.
The only way to figure this out is to see where the memory is going.
I think you may accidentally store results that you don't need, or that you underestimate the size of your output/intermediate variables.
Here is how I would proceed:
Turn on dbstop if error
Run the code till you get the out of memory error
See how much memory is being used (make sure to check all work spaces)
Probably you now know where the extra memory is going. If you don't find much memory being used, continue with this:
Check the memory command to see how much memory is still available
Carefully look at the line being executed, perhaps you actually need a huge amount of memory for it
If all else fails share your findings here and others can help you look for it.
The reason of memory usage growth is CPlex. I tried many alternatives but I couldn't find any other useful solution than increasing virtual memory to several hundred GBs. If you don't have special reasons to insist on CPlex (commercial usage, licensing etc.), I would suggest anyone, who encounter this problem, to use GUROBI. It is free and unlimited for academic usage, totally integrable with MATLAB. That's the solution I have found for my problem with Cplex. I hope this solution works for everybody.

Which language should I prefer working with if I want to use the Fast Artificial Neural Network Library (FANN)?

I am working on reducing dimentionality of a set of (Boolean) vectors with both the number and dimentionality of vectors tending to be of the order of 10^5-10^6 using autoencoders. Hence even though speed is not of essence (it is supposed to be a pre-computation for a clustering algorithm) but obviously one would expect that the computations take a reasonable amount of time. Seeing how the library itself was written in c++ would it be a good idea to stick to it or to code in Java (Since the rest of the code is written in Java)? Or would it not matter at all?
That question is difficult to answer. It depends on:
How computationally demanding will be your code? If the hard part is done by the library and your code is only to generate the input and post-process the output, Java would be a valid choice. Compare it to Matlab: The language is very slow but the built-in algorithms are super-fast.
How skilled are you (or your team, or your future students) in Java and C++. Consider learning C++ takes a lot of time. If you have only a small scaled project, it could be easier to buy a bigger machine or wait two days instead of one, to get the results.
Have you legacy code in one of the languages you want to couple or maybe re-use?
Overall, I would advice you to set up a benchmark example in whatever language you like more. Then give it a try. If the speed is ok, stick to it. If you wait to long, think about alternatives (new hardware, parallel execution, different language).

Numerical Integral of large numbers in Fortran 90

so I have the following Integral that i need to do numerically:
Int[Exp(0.5*(aCosx + bSinx + cCos2x + dSin2x))] x=0..2Pi
The problem is that the output at any given value of x can be extremely large, e^2000, so larger than I can deal with in double precision.
I havn't had much luck googling for the following, how do you deal with large numbers in fortran, not high precision, i dont care if i know it to beyond double precision, and at the end i'll just be taking the log, but i just need to be able to handle the large numbers untill i can take the log..
Are there integration packes that have the ability to handle arbitrarily large numbers? Mathematica clearly can.. so there must be something like this out there.
Cheers
This is probably an extended comment rather than an answer but here goes anyway ...
As you've already observed Fortran isn't equipped, out of the box, with the facility for handling such large numbers as e^2000. I think you have 3 options.
Use mathematics to reduce your problem to one which does (or a number of related ones which do) fall within the numerical range that your Fortran compiler can compute.
Use Mathematica or one of the other computer algebra systems (eg Maple, SAGE, Maxima). All (I think) of these can be integrated into a Fortran program (with varying degrees of difficulty and integration).
Use a library for high-precision (often called either arbitray-precision or multiple-precision too) arithmetic. Your favourite search engine will turn up a number of these for you, some written in Fortran (and therefore easy to integrate), some written in C/C++ or other languages (and therefore slightly harder to integrate). You might start your search at Lawrence Berkeley or the GNU bignum library.
(Yes I know that I wrote that you have 3 options, but your question suggests that you aren't ready to consider this yet) You could write your own high-/arbitrary-/multiple-precision functions. Fortran provides everything you need to construct such a library, there is a lot of work already done in the field to learn from, and it might be something of interest to you.
In practice it generally makes sense to apply as much mathematics as possible to a problem before resorting to a computer, that process can not only assist in solving the problem but guide your selection or construction of a program to solve what's left of the problem.
I agree with High Peformance Mark that the best option here numerically is to use analytics to scale or simplify the result first.
I will mention that if you do want to brute force it, gfortran (as of 4.6, with the libquadmath library) has support for quadruple precision reals, which you can use by selecting the appropriate kind. As long as your answers (and the intermediate results!) don't get too much bigger than what you're describing, that may work, but it will generally be much slower than double precision.
This requires looking deeper at the problem you are trying to solve and the behavior of the underlying mathematics. To add to the good advice already provided by Mark and Jonathan, consider expanding the exponential and trig functions into Taylor series and truncating to the desired level of precision.
Also, take a step back and ask why you are trying to accomplish by calculating this value. As an example, I recently had to debug why I was getting outlandish results from a property correlation which was calculating vapor pressure of a fluid to see if condensation was occurring. I spent a long time trying to understand what was wrong with the temperature being fed into the correlation until I realized the case causing the error was a simulation of vapor detonation. The problem was not in the numerics but in the logic of checking for condensation during a literal explosion; physically, a condensation check made no sense. The real problem was the code was asking an unnecessary question; it already had the answer.
I highly recommend Forman Acton's Numerical Methods That (Usually) Work and Real Computing Made Real. Both focus on problems like this and suggest techniques to tame ill-mannered computations.

Compilation optimization for iPhone : floating point or fixed point?

I'm building a library for iphone (speex, but i'm sure it will apply to a lot of other libs too) and the make script has an option to use fixed point instead of floating point.
As the iphone ARM processor has the VFP extension and performs very well floating point calculations, do you think it's a better choice to use the fixed point option ?
If someone already benchmarked this and wants to share , i would really thank him.
Well, it depends on the setup of your application, here is some guidelines
First try turning on optimization to 0s (Fastest Smallest)
Turn on Relax IEEE Compliance
If your application can easily process floating point numbers in contiguous memory locations independently, you should look at the ARM NEON intrinsic's and assembly instructions, they can process up to 4 floating point numbers in a single instruction.
If you are already heavily using floating point math, try to switch some of your logic to fixed point (but keep in mind that moving from an NEON register to an integer register results in a full pipeline stall)
If you are already heavily using integer math, try changing some of your logic to floating point math.
Remember to profile before optimization
And above all, better algorithms will always beat micro-optimizations such as the above.
If you are dealing with large blocks of sequential data, NEON is definitely the way to go.
Float or fixed, that's a good question. NEON is somewhat faster dealing with fixed, but I'd keep the native input format since conversions take time and eventually, extra memory.
Even if the lib offers a different output formats as an option, it almost alway means lib-internal conversions. So I guess float is the native one in this case. Stick to it.
Noone prevents you from micro-optimizing better algorithms. And usually, the better the algorithm, the more performance gain can be achieved through micro-optimizations due to the pipelining on modern machines.
I'd stay away from intrinsics though. There are so many posts on the net complaining about intrinsics doing something crazy, especially when dealing with immediate values.
It can and will get very troublesome, and you can hardly optimize anything with intrinsics either.