I have a function as follows:
My optimized matlab code is:
function gamma = calcGamma(H, d, delta, f)
s= size(H);
Nv = s(1);
Ne = s(2);
gamma = zeros(Ne,1);
for e =1:Ne
hue = H(:,e);
sdu=f./sqrt(d);
mHUE = repmat(hue',Nv,1);
mHVE = repmat(hue,1,Nv);
mSDU = repmat(sdu',Nv,1);
mSd = repmat(sdu,1,Nv);
ss1 = mHUE .* mHVE/delta(e) .* (mSDU-mSd).^2;
gamma(e) = sum(ss1(:));
end
However, since Ne is very big, it takes quite a long time to calculate the function.
I see an similar question with a good solution, but I do not understand how it is derived.
Any solution to avoid the for-loop? Thanks
I am not sure if this will be faster, but instead of your trick with repmat, you can use bsxfun. This trick is pretty similar to the array broadcasting that is standard in numpy and saves the creation of the large intermediate matrices like mHUE.
Another thing you should always do is to move everything out of the loop that does not depend on e. It seems to me that the calculation of sdu is totally constant, so do that once before the loop. And I guess that delta(e) is a scalar, so instead of dividing the big matrices by that, do it once afterwards:
s= size(H);
Nv = s(1);
Ne = s(2);
gamma = zeros(Ne,1);
sdu = f./sqrt(d);
M = bsxfun(#minus, sdu', sdu).^2;
for e =1:Ne
hue = H(:,e);
ss1 = bsxfun(#times, hue', hue) .* M;
gamma(e) = sum(ss1(:));
end
gamma = gamma ./ delta;
It might be possible to remove the for-loop, but it is doubtful that that will increase speed, since you have just a single loop and your calculation time is anyhow dominated by the multiplication of the big matrices. Moreover, removing the for-loop will just make your function very hard to understand, so just leave it as is.
Related
Say I have a long list A of values (say of length 1000) for which I want to compute the std in pairs of 100, i.e. I want to compute std(A(1:100)), std(A(2:101)), std(A(3:102)), ..., std(A(901:1000)).
In Excel/VBA one can easily accomplish this by writing e.g. =STDEV(A1:A100) in one cell and then filling down in one go. Now my question is, how could one accomplish this efficiently in Matlab without having to use any expensive for-loops.
edit: Is it also possible to do this for a list of time series, e.g. when A has dimensions 1000 x 4 (i.e. 4 time series of length 1000)? The output matrix should then have dimensions 901 x 4.
Note: For the fastest solution see Luis Mendo's answer
So firstly using a for loop for this (especially if those are your actual dimensions) really isn't going to be expensive. Unless you're using a very old version of Matlab, the JIT compiler (together with pre-allocation of course) makes for loops inexpensive.
Secondly - have you tried for loops yet? Because you should really try out the naive implementation first before you start optimizing prematurely.
Thirdly - arrayfun can make this a one liner but it is basically just a for loop with extra overhead and very likely to be slower than a for loop if speed really is your concern.
Finally some code:
n = 1000;
A = rand(n,1);
l = 100;
for loop (hardly bulky, likely to be efficient):
S = zeros(n-l+1,1); %//Pre-allocation of memory like this is essential for efficiency!
for t = 1:(n-l+1)
S(t) = std(A(t:(t+l-1)));
end
A vectorized (memory in-efficient!) solution:
[X,Y] = meshgrid(1:l)
S = std(A(X+Y-1))
A probably better vectorized solution (and a one-liner) but still memory in-efficient:
S = std(A(bsxfun(#plus, 0:l-1, (1:l)')))
Note that with all these methods you can replace std with any function so long as it is applies itself to the columns of the matrix (which is the standard in Matlab)
Going 2D:
To go 2D we need to go 3D
n = 1000;
k = 4;
A = rand(n,k);
l = 100;
ind = bsxfun(#plus, permute(o:n:(k-1)*n, [3,1,2]), bsxfun(#plus, 0:l-1, (1:l)')); %'
S = squeeze(std(A(ind)));
M = squeeze(mean(A(ind)));
%// etc...
OR
[X,Y,Z] = meshgrid(1:l, 1:l, o:n:(k-1)*n);
ind = X+Y+Z-1;
S = squeeze(std(A(ind)))
M = squeeze(mean(A(ind)))
%// etc...
OR
ind = bsxfun(#plus, 0:l-1, (1:l)'); %'
for t = 1:k
S = std(A(ind));
M = mean(A(ind));
%// etc...
end
OR (taken from Luis Mendo's answer - note in his answer he shows a faster alternative to this simple loop)
S = zeros(n-l+1,k);
M = zeros(n-l+1,k);
for t = 1:(n-l+1)
S(t,:) = std(A(k:(k+l-1),:));
M(t,:) = mean(A(k:(k+l-1),:));
%// etc...
end
What you're doing is basically a filter operation.
If you have access to the image processing toolbox,
stdfilt(A,ones(101,1)) %# assumes that data series are in columns
will do the trick (no matter the dimensionality of A). Note that if you also have access to the parallel computing toolbox, you can let filter operations like these run on a GPU, although your problem might be too small to generate noticeable speedups.
To minimize number of operations, you can exploit the fact that the standard deviation can be computed as a difference involving second and first moments,
and moments over a rolling window are obtained efficiently with a cumulative sum (using cumsum):
A = randn(1000,4); %// random data
N = 100; %// window size
c = size(A,2);
A1 = [zeros(1,c); cumsum(A)];
A2 = [zeros(1,c); cumsum(A.^2)];
S = sqrt( (A2(1+N:end,:)-A2(1:end-N,:) ...
- (A1(1+N:end,:)-A1(1:end-N,:)).^2/N) / (N-1) ); %// result
Benchmarking
Here's a comparison against a loop based solution, using timeit. The loop approach is as in Dan's solution but adapted to the 2D case, exploting the fact that std works along each column in a vectorized manner.
%// File loop_approach.m
function S = loop_approach(A,N);
[n, p] = size(A);
S = zeros(n-N+1,p);
for k = 1:(n-N+1)
S(k,:) = std(A(k:(k+N-1),:));
end
%// File bsxfun_approach.m
function S = bsxfun_approach(A,N);
[n, p] = size(A);
ind = bsxfun(#plus, permute(0:n:(p-1)*n, [3,1,2]), bsxfun(#plus, 0:n-N, (1:N).')); %'
S = squeeze(std(A(ind)));
%// File cumsum_approach.m
function S = cumsum_approach(A,N);
c = size(A,2);
A1 = [zeros(1,c); cumsum(A)];
A2 = [zeros(1,c); cumsum(A.^2)];
S = sqrt( (A2(1+N:end,:)-A2(1:end-N,:) ...
- (A1(1+N:end,:)-A1(1:end-N,:)).^2/N) / (N-1) );
%// Benchmarking code
clear all
A = randn(1000,4); %// Or A = randn(1000,1);
N = 100;
t_loop = timeit(#() loop_approach(A,N));
t_bsxfun = timeit(#() bsxfun_approach(A,N));
t_cumsum = timeit(#() cumsum_approach(A,N));
disp(' ')
disp(['loop approach: ' num2str(t_loop)])
disp(['bsxfun approach: ' num2str(t_bsxfun)])
disp(['cumsum approach: ' num2str(t_cumsum)])
disp(' ')
disp(['bsxfun/loop gain factor: ' num2str(t_loop/t_bsxfun)])
disp(['cumsum/loop gain factor: ' num2str(t_loop/t_cumsum)])
Results
I'm using Matlab R2014b, Windows 7 64 bits, dual core processor, 4 GB RAM:
4-column case:
loop approach: 0.092035
bsxfun approach: 0.023535
cumsum approach: 0.0002338
bsxfun/loop gain factor: 3.9106
cumsum/loop gain factor: 393.6526
Single-column case:
loop approach: 0.085618
bsxfun approach: 0.0040495
cumsum approach: 8.3642e-05
bsxfun/loop gain factor: 21.1431
cumsum/loop gain factor: 1023.6236
So the cumsum-based approach seems to be the fastest: about 400 times faster than the loop in the 4-column case, and 1000 times faster in the single-column case.
Several functions can do the job efficiently in Matlab.
On one side, you can use functions such as colfilt or nlfilter, which performs computations on sliding blocks. colfilt is way more efficient than nlfilter, but can be used only if the order of the elements inside a block does not matter. Here is how to use it on your data:
S = colfilt(A, [100,1], 'sliding', #std);
or
S = nlfilter(A, [100,1], #std);
On your example, you can clearly see the difference of performance. But there is a trick : both functions pad the input array so that the output vector has the same size as the input array. To get only the relevant part of the output vector, you need to skip the first floor((100-1)/2) = 49 first elements, and take 1000-100+1 values.
S(50:end-50)
But there is also another solution, close to colfilt, more efficient. colfilt calls col2im to reshape the input vector into a matrix on which it applies the given function on each distinct column. This transforms your input vector of size [1000,1] into a matrix of size [100,901]. But colfilt pads the input array with 0 or 1, and you don't need it. So you can run colfilt without the padding step, then apply std on each column and this is easy because std applied on a matrix returns a row vector of the stds of the columns. Finally, transpose it to get a column vector if you want. In brief and in one line:
S = std(im2col(X,[100 1],'sliding')).';
Remark: if you want to apply a more complex function, see the code of colfilt, line 144 and 147 (for v2013b).
If your concern is speed of the for loop, you can greatly reduce the number of loop iteration by folding your vector into an array (using reshape) with the columns having the number of element you want to apply your function on.
This will let Matlab and the JIT perform the optimization (and in most case they do that way better than us) by calculating your function on each column of your array.
You then reshape an offseted version of your array and do the same. You will still need a loop but the number of iteration will only be l (so 100 in your example case), instead of n-l+1=901 in a classic for loop (one window at a time).
When you're done, you reshape the array of result in a vector, then you still need to calculate manually the last window, but overall it is still much faster.
Taking the same input notation than Dan:
n = 1000;
A = rand(n,1);
l = 100;
It will take this shape:
width = (n/l)-1 ; %// width of each line in the temporary result array
tmp = zeros( l , width ) ; %// preallocation never hurts
for k = 1:l
tmp(k,:) = std( reshape( A(k:end-l+k-1) , l , [] ) ) ; %// calculate your stat on the array (reshaped vector)
end
S2 = [tmp(:) ; std( A(end-l+1:end) ) ] ; %// "unfold" your results then add the last window calculation
If I tic ... toc the complete loop version and the folded one, I obtain this averaged results:
Elapsed time is 0.057190 seconds. %// windows by window FOR loop
Elapsed time is 0.016345 seconds. %// "Folded" FOR loop
I know tic/toc is not the way to go for perfect timing but I don't have the timeit function on my matlab version. Besides, the difference is significant enough to show that there is an improvement (albeit not precisely quantifiable by this method). I removed the first run of course and I checked that the results are consistent with different matrix sizes.
Now regarding your "one liner" request, I suggest your wrap this code into a function like so:
function out = foldfunction( func , vec , nPts )
n = length( vec ) ;
width = (n/nPts)-1 ;
tmp = zeros( nPts , width ) ;
for k = 1:nPts
tmp(k,:) = func( reshape( vec(k:end-nPts+k-1) , nPts , [] ) ) ;
end
out = [tmp(:) ; func( vec(end-nPts+1:end) ) ] ;
Which in your main code allows you to call it in one line:
S = foldfunction( #std , A , l ) ;
The other great benefit of this format, is that you can use the very same sub function for other statistical function. For example, if you want the "mean" of your windows, you call the same just changing the func argument:
S = foldfunction( #mean , A , l ) ;
Only restriction, as it is it only works for vector as input, but with a bit of rework it could be made to take arrays as input too.
I have a probability matrix(glcm) of size 256x256x20. I have reshaped the matrix to
65536x20, so that I can eliminate one loop (along the 3rd dimension).
I want to do the following calculation.
for y = 1:256
for x = 1:256
if (ismember((x + y),(2:2*256)))
p_xplusy((x+y),:) = p_xplusy((x+y),:) + glcm(((y-1)*256+x),:);
end
end
end
So the p_xplusy will be a 511x20 matrix which each element is the sum of the diagonal of nxn sub matrix (where n belongs to 1:256) of the original 256x256x20 matrix.
This code block is making my program inefficient and I want to vectorize this loop. Any help would be appreciated.
Since your if statement is just checking whether x+y is less than or equal to 256, just force it to always be, and remove excess loops:
for y = 1:256
for x = 1:256-y
p_xplusy((x+y),:) = p_xplusy((x+y),:) + glcm(((y-1)*256+x),:);
end
end
This should provide a noticeable speed-up to your code.
You can reduce the complexity from O(n^2) to O(2*n) and thus improve runtime efficiency -
N = 256;
for k1 = 1:N
idx_glcm = k1:N-1:N*(k1-1)+1;
p_xplusy(k1+1,:) = p_xplusy(k1+1,:) + sum(glcm(idx_glcm,:),1);
end
for k1 = 2:N
idx_glcm = k1*N:N-1:N*(N-1)+k1;
p_xplusy(N+k1,:) = p_xplusy(N+k1,:) + sum(glcm(idx_glcm,:),1);
end
Some quick runtime tests seem to confirm our efficiency theory too.
I'm trying to write a Non-Local Means filter for an assignment. I've written the code in two ways, but the method I'd expect to be quicker is much slower than the other method.
Method 1: (This method is slower)
for i = 1:size(I,1)
tic
sprintf('%d/%d',i,size(I,1))
for j = 1:size(I,2)
w = exp((-abs(I-I(i,j))^2)/(h^2));
Z = sum(sum(w));
w = w/Z;
sumV = w .* I;
NL(i,j) = sum(sum(sumV));
end
toc
end
Method 2: (This method is faster)
for i = 1:size(I,1)
tic
sprintf('%d/%d',i,size(I,1))
for j = 1:size(I,2)
Z = 0;
for k = 1:size(I,1)
for l = 1:size(I,2)
w = exp((-abs(I(i,j)-I(k,l))^2)/(h^2));
Z = Z + w;
end
end
sumV = 0;
for k = 1:size(I,1)
for l = 1:size(I,2)
w = exp((-abs(I(i,j)-I(k,l))^2)/(h^2));
w = w/Z;
sumV = sumV + w * I(k,l);
end
end
NL(i,j) = sumV;
end
toc
end
I really thought that MATLAB would be optimized for Matrix operations. Is there reason it isn't in this code? The difference is pretty large. For a 512x512 image, with h = 0.05, one iteration of the outer loop takes 24-28 seconds for Method 1 and 10-12 seconds for Method 2.
The two methods are not doing the same thing. In Method 2, the term abs(I(i,j)-I(k,l)) in the w= expression is being squared, which is fine because the term is just a single numeric value.
However, in Method 1, the term abs(I-I(i,j)) is actually a matrix (The numeric value I(i,j) is being subtracted from every element in the matrix I, returning a matrix again). So, when this term is squared with the ^ operator, matrix multiplication is happening. My guess, based on Method 2, is that this is not what you intended. If instead, you want to square each element in that matrix, then use the .^ operator, as in abs(I-I(i,j)).^2
Matrix multiplication is a much more computation intensive operation, which is likely why Method 1 takes so much longer.
My guess is that you have not preassigned NL, that both methods are in the same function (or are scripts and you didn't clear NL between function runs). This would have slowed the first method by quite a bit.
Try the following: Create a function for both methods. Run each method once. Then use the profiler to see where each function spends most of its time.
A much faster implementation (Vectorized) could be achieved using im2col:
Create a Vector out of each neighborhood.
Using predefined indices calculate the distance between each patch.
Sum over the values and the weights using sum function.
This method will work with no loop at all.
I have a code which works perfectly, and I'm looking to make it more efficient.
t = -1:.001:1;
t_for_y = -50:.01:50;
x = zeros(size(t));
x(1001:end) = exp(-3 * t(1001:end));
h = zeros(size(t));
h(1001:end) = exp(-2 * t(1001:end)); % FIXED TYPO
for k = 1:length(t_for_y)
X(k)=trapz(t,x.*exp(-1i*t*t_for_y(k)));
H(k)=trapz(t,h.*exp(-1i*t*t_for_y(k)));
end
Y = X.*H;
for k = 1:length(t)
y(k) = (1/(2*pi))*trapz(t_for_y,Y.*exp(1i*t(k)*t_for_y));
end
plot(t,real(y));grid on;
I'd like to only use one for-loop or no for loops is this possible?
Is there a way of using doing this faster?
The trapz function can take a matrix as the second input (see help trapz for more info). This means that your first column can be replaced by the following:
t_i = 1i*t';
exp_t = bsxfun(#times,t_i,t_for_y); % Precompute for speed
xexp = bsxfun(#times,x',exp_t);
hexp = bsxfun(#times,h',exp_t);
% NOTE: As you've got it, X and H are identical - I assume this is a typo
X = trapz(t,xexp,1);
H = trapz(t,xexp,1);
Be aware that this will generate some fairly large matrices (~2000 X 10000), which can eat up your memory if you're not careful.
The second loop can be linearised in a similar manner:
% Using exp_t from the previous loop
yexp = bsxfun(#times,Y,exp_t);
% NOTE: As you've got it, X and H are identical - I assume this is a typo
y = trapz(t_for_y,xexp,2);
Again, this will use a lot of memory. You may find that you will save memory by using sparse matrices.
If memory is at a premium for you, then your original code is better (though you should preallocate X, H and y for a slight speed boost), as the time saved by linearising it is not really enough to justify the extra memory. If you've got memory aplenty, then this method is slightly faster.
The problem says:
Three tensile tests were carried out on an aluminum bar. In each test the strain was measured at the same values of stress. The results were
where the units of strain are mm/m.Use linear regression to estimate the modulus of elasticity of the bar (modulus of elasticity = stress/strain).
I used this program for this problem:
function coeff = polynFit(xData,yData,m)
% Returns the coefficients of the polynomial
% a(1)*x^(m-1) + a(2)*x^(m-2) + ... + a(m)
% that fits the data points in the least squares sense.
% USAGE: coeff = polynFit(xData,yData,m)
% xData = x-coordinates of data points.
% yData = y-coordinates of data points.
A = zeros(m); b = zeros(m,1); s = zeros(2*m-1,1);
for i = 1:length(xData)
temp = yData(i);
for j = 1:m
b(j) = b(j) + temp;
temp = temp*xData(i);
end
temp = 1;
for j = 1:2*m-1
s(j) = s(j) + temp;
temp = temp*xData(i);
end
end
for i = 1:m
for j = 1:m
A(i,j) = s(i+j-1);
end
end
% Rearrange coefficients so that coefficient
% of x^(m-1) is first
coeff = flipdim(gaussPiv(A,b),1);
The problem is solved without a program as follows
MY ATTEMPT
T=[34.5,69,103.5,138];
D1=[.46,.95,1.48,1.93];
D2=[.34,1.02,1.51,2.09];
D3=[.73,1.1,1.62,2.12];
Mod1=T./D1;
Mod2=T./D2;
Mod3=T./D3;
xData=T;
yData1=Mod1;
yData2=Mod2;
yData3=Mod3;
coeff1 = polynFit(xData,yData1,2);
coeff2 = polynFit(xData,yData2,2);
coeff3 = polynFit(xData,yData3,2);
x1=(0:.5:190);
y1=coeff1(2)+coeff1(1)*x1;
subplot(1,3,1);
plot(x1,y1,xData,yData1,'o');
y2=coeff2(2)+coeff2(1)*x1;
subplot(1,3,2);
plot(x1,y2,xData,yData2,'o');
y3=coeff3(2)+coeff3(1)*x1;
subplot(1,3,3);
plot(x1,y3,xData,yData3,'o');
What do I have to do to get this result?
As a general advice:
avoid for loops wherever possible.
avoid using i and j as variable names, as they are Matlab built-in names for the imaginary unit (I really hope that disappears in a future release...)
Due to m being an interpreted language, for-loops can be very slow compared to their compiled alternatives. Matlab is named MATtrix LABoratory, meaning it is highly optimized for matrix/array operations. Usually, when there is an operation that cannot be done without a loop, Matlab has a built-in function for it that runs way way faster than a for-loop in Matlab ever will. For example: computing the mean of elements in an array: mean(x). The sum of all elements in an array: sum(x). The standard deviation of elements in an array: std(x). etc. Matlab's power comes from these built-in functions.
So, your problem. You have a linear regression problem. The easiest way in Matlab to solve this problem is this:
%# your data
stress = [ %# in Pa
34.5 69 103.5 138] * 1e6;
strain = [ %# in m/m
0.46 0.95 1.48 1.93
0.34 1.02 1.51 2.09
0.73 1.10 1.62 2.12]' * 1e-3;
%# make linear array for the data
yy = strain(:);
xx = repmat(stress(:), size(strain,2),1);
%# re-formulate the problem into linear system Ax = b
A = [xx ones(size(xx))];
b = yy;
%# solve the linear system
x = A\b;
%# modulus of elasticity is coefficient
%# NOTE: y-offset is relatively small and can be ignored)
E = 1/x(1)
What you did in the function polynFit is done by A\b, but the \-operator is capable of doing it way faster, way more robust and way more flexible than what you tried to do yourself. I'm not saying you shouldn't try to make these thing yourself (please keep on doing that, you learn a lot from it!), I'm saying that for the "real" results, always use the \-operator (and check your own results against it as well).
The backslash operator (type help \ on the command prompt) is extremely useful in many situations, and I advise you learn it and learn it well.
I leave you with this: here's how I would write your polynFit function:
function coeff = polynFit(X,Y,m)
if numel(X) ~= numel(X)
error('polynFit:size_mismathc',...
'number of elements in matrices X and Y must be equal.');
end
%# bad condition number, rank errors, etc. taken care of by \
coeff = bsxfun(#power, X(:), m:-1:0) \ Y(:);
end
I leave it up to you to figure out how this works.