Hatching area between two symbolic curves matlab - matlab

I need to shade the area between symbolic curves and the x axis.
syms x
j(1) = x^2
j(2) = x^3
j(3) = x^5
j(4) = x^6
for i = 1:4
subplot(2,2,i);
f(i) = ezplot(j(i),[0,6000]);
Hatch(f(i))
end
This gives me an error. After looking in the matlab documentation, i end up with codes like
f1 := plot::Function2d(sqrt(x), x = 0..2, Color = RGB::Black):
Is this even matlab code? What's with the "::" and ":="? Why does this throw an error?
Thanks for any help guys!
Thanks!

The line f1 := plot::Function2d(sqrt(x), x = 0..2, Color = RGB::Black): is for MuPad (Symbolic Math toolbox). However, you can evaluate the symbolic functions without this toolbox using Matlab's ezplot.
The following figure
is given by (please see the comments that made your code work)
f{1} = 'x^2'; % declare as cell array {} of string ''
f{2} = 'x^3';
f{3} = 'x^5';
f{4} = 'x^6';
figure('Color', 'w');
for ii = 1:4 %do not use i or j in Matlab
subplot(2,2,ii);
h(ii) = ezplot(f{ii},[0,6000]); %the correct way to call ezplot
x = get(h(ii), 'XData'); %get the x and y data
y = get(h(ii), 'YData');
area(x,y,'FaceColor',[.7 0 0]); %plot the (x,y) area in red
end

Write you command under mupad and after to call it with Matlab command window have a look to this : MatLab and MuPad
For more information go here

Related

How to miss out matrix elements in pcolor plot?

I'm solving a set of nonlinear simultaneous equations using Matlab's fsolve to find unknown parameters x1 and x2. The simultaneous equations have two independent parameters a and b, as defined in the root2d function:
function F = root2d(x,a,b)
F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(a+x(1)^2);
F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - b;
end
I use the following code to solve the simultaneous equations, and plot the results as a 2d figure using pcolor.
alist = linspace(0.6,1.2,10);
blist = linspace(0.4,0.8,5);
% results
x1list = zeros(length(blist),length(alist));
x2list = zeros(length(blist),length(alist));
% solver options
options = optimoptions('fsolve','Display','None');
for ii = 1:length(blist)
b = blist(ii);
for jj = 1:length(alist)
a = alist(jj);
x0 = [0 0]; % init guess
[xopt,yopt,exitflag] = fsolve(#(x0)root2d(x0,a,b),x0,options);
% optimised values
x1list(ii,jj) = xopt(1);
x2list(ii,jj) = xopt(2);
success(ii,jj) = exitflag; % did solver succeed?
end
end
% plotting
figure
s = pcolor(alist(success>0),blist(success>0),x1list(success>0));
xlabel('a')
ylabel('b')
title('my data x_1')
figure
s = pcolor(alist(success>0),blist(success>0),x2list(success>0));
xlabel('a')
ylabel('b')
title('my data x_2')
However I only want to plot the x1 and x2 where the solver has successfully converged to a solution. This is where the success matrix element (or exitflag) has a value greater than 0. Usually you just write x1list(success>0) when using the plot function and Matlab omits any solutions where (success<=0), but pcolor doesn't have that functionality.
Is there a way around this? For example, displaying all (success<=0) solutions as a black area.
Yes there is!
The easiest way is to make them NaN, so they are simply not drawn.
just do
x1list(~success)=NaN;
pcolor(alist,blist,x1list)

Matlab R2017b - Transparency violation error while using parfor-loop to solve equation

This program is OK with "for", but it will prompt
“Error using syms. Transparency violation error. See Parallel Computing Toolbox documentation about Transparency. ”
when I switch to "parfor", if you could tell me how to modify this code that will be better, thank you very much.
clc
clear
close all
% parpool(4)
a = rand(5,4);
parfor i = 1:5
syms x y
eq1 = a(i,1)*x+a(i,2)*y==2.3;
eq2 = a(i,3)*x+a(i,4)*y==5.1;
x = [];y = [];
[x,y] = vpasolve([eq1 eq2],[x y]);
disp(x);
end
You simply need to replace the non-transparent version of syms that you're using with a transparent-friendly version. In other words, you need
parfor i = 1:5
x = sym('x');
y = sym('y');
....
end

Finding solution to Cauchy prob. in Matlab

I need some help with finding solution to Cauchy problem in Matlab.
The problem:
y''+10xy = 0, y(0) = 7, y '(0) = 3
Also I need to plot the graph.
I wrote some code but, I'm not sure whether it's correct or not. Particularly in function section.
Can somebody check it? If it's not correct, where I made a mistake?
Here is separate function in other .m file:
function dydx = funpr12(x,y)
dydx = y(2)+10*x*y
end
Main:
%% Cauchy problem
clear all, clc
xint = [0,5]; % interval
y0 = [7;3]; % initial conditions
% numerical solution using ode45
sol = ode45(#funpr12,xint,y0);
xx = [0:0.01:5]; % vector of x values
y = deval(sol,xx); % vector of y values
plot(xx,y(1,:),'r', 'LineWidth',3)
legend('y1(x)')
xlabel('x')
ylabel('y(x)')
I get this graph:
ode45 and its related ilk are only designed to solve first-order differential equations which are of the form y' = .... You need to do a bit of work if you want to solve second-order differential questions.
Specifically, you'll have to represent your problem as a system of first-order differential equations. You currently have the following ODE:
y'' + 10xy = 0, y(0) = 7, y'(0) = 3
If we rearrange this to solve for y'', we get:
y'' = -10xy, y(0) = 7, y'(0) = 3
Next, you'll want to use two variables... call it y1 and y2, such that:
y1 = y
y2 = y'
The way you have built your code for ode45, the initial conditions that you specified are exactly this - the guess using y and its first-order guess y'.
Taking the derivative of each side gives:
y1' = y'
y2' = y''
Now, doing some final substitutions we get this final system of first-order differential equations:
y1' = y2
y2' = -10*x*y1
If you're having trouble seeing this, simply remember that y1 = y, y2 = y' and finally y2' = y'' = -10*x*y = -10*x*y1. Therefore, you now need to build your function so that it looks like this:
function dydx = funpr12(x,y)
y1 = y(2);
y2 = -10*x*y(1);
dydx = [y1 y2];
end
Remember that the vector y is a two element vector which represents the value of y and the value of y' respectively at each time point specified at x. I would also argue that making this an anonymous function is cleaner. It requires less code:
funpr12 = #(x,y) [y(2); -10*x*y(1)];
Now go ahead and solve it (using your code):
%%// Cauchy problem
clear all, clc
funpr12 = #(x,y) [y(2); -10*x*y(1)]; %// Change
xint = [0,5]; % interval
y0 = [7;3]; % initial conditions
% numerical solution using ode45
sol = ode45(funpr12,xint,y0); %// Change - already a handle
xx = [0:0.01:5]; % vector of x values
y = deval(sol,xx); % vector of y values
plot(xx,y(1,:),'r', 'LineWidth',3)
legend('y1(x)')
xlabel('x')
ylabel('y(x)')
Take note that the output when simulating the solution to the differential equation by deval will be a two column matrix. The first column is the solution to the system while the second column is the derivative of the solution. As such, you'll want to plot the first column, which is what the plot syntax is doing.
I get this plot now:

MATLAB solve Ordinary Differential Equations

How can I use matlab to solve the following Ordinary Differential Equations?
x''/y = y''/x = -( x''y + 2x'y' + xy'')
with two known points, such as t=0: x(0)= x0, y(0) = y0; t=1: x(1) = x1, y(1) = y1 ?
It doesn't need to be a complete formula if it is difficult. A numerical solution is ok, which means, given a specific t, I can get the value of x(t) and y(t).
If matlab is hard to do this, mathematica is also OK. But as I am not familiar with mathematica, so I would prefer matlab if possible.
Looking forward to help, thanks!
I asked the same question on stackexchange, but haven't get good answer yet.
https://math.stackexchange.com/questions/812985/matlab-or-mathematica-solve-ordinary-differential-equations
Hope I can get problem solved here!
What I have tried is:
---------MATLAB
syms t
>> [x, y] = dsolve('(D2x)/y = -(y*D2x + 2Dx*Dy + x*D2y)', '(D2y)/x = -(y*D2x + 2Dx*Dy + x*D2y)','t')
Error using sym>convertExpression (line 2246)
Conversion to 'sym' returned the MuPAD error: Error: Unexpected 'identifier'.
[line 1, col 31]
Error in sym>convertChar (line 2157)
s = convertExpression(x);
Error in sym>convertCharWithOption (line 2140)
s = convertChar(x);
Error in sym>tomupad (line 1871)
S = convertCharWithOption(x,a);
Error in sym (line 104)
S.s = tomupad(x,'');
Error in dsolve>mupadDsolve (line 324)
sys = [sys_sym sym(sys_str)];
Error in dsolve (line 186)
sol = mupadDsolve(args, options);
--------MATLAB
Also, I tried to add conditions, such as x(0) = 2, y(0)=8, x(1) = 7, y(1) = 18, and the errors are still similar. So what I think is that this cannot be solve by dsolve function.
So, again, the key problem is, given two known points, such as when t=0: x(0)= x0, y(0) = y0; t=1: x(1) = x1, y(1) = y1 , how I get the value of x(t) and y(t)?
Update:
I tried ode45 functions. First, in order to turn the 2-order equations into 1-order, I set x1 = x, x2=y, x3=x', x4=y'. After some calculation, the equation becomes:
x(1)' = x(3) (1)
x(2)' = x(4) (2)
x(3)' = x(2)/x(1)*(-2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2)) (3)
x(4)' = -2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2) (4)
So the matlab code I wrote is:
myOdes.m
function xdot = myOdes(t,x)
xdot = [x(3); x(4); x(2)/x(1)*(-2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2)); -2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2)]
end
main.m
t0 = 0;
tf = 1;
x0 = [2 3 5 7]';
[t,x] = ode45('myOdes',[t0,tf],x0);
plot(t,x)
It can work. However, actually this is not right. Because, what I know is that when t=0, the value of x and y, which is x(1) and x(2); and when t=1, the value of x and y. But the ode functions need the initial value: x0, I just wrote the condition x0 = [2 3 5 7]' randomly to help this code work. So how to solve this problem?
UPDATE:
I tried to use the function bvp4c after I realized that it is a boundary value problem and the following is my code (Suppose the two boundry value conditions are: when t=0: x=1, y=3; when t=1, x=6, y=9. x is x(1), y is x(2) ):
1. bc.m
function res = bc(ya,yb)
res = [ ya(1)-1; ya(2)-3; yb(1) - 6; yb(2)-9];
end
2. ode.m
function dydx = ode(t,x)
dydx = [x(3); x(4); x(2)/x(1)*(-2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2)); -2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2)];
end
3. mainBVP.m
solinit = bvpinit(linspace(0,6,10),[1 0 -1 0]);
sol = bvp4c(#ode,#bc,solinit);
t = linspace(0,6);
x = deval(sol,t);
plot(t,x(1,:));
hold on
plot(t,x(2,:));
plot(t,x(3,:));
plot(t,x(4,:));
x(1,:)
x(2,:)
It can work, but I don't know whether it is right. I will check it again to make sure it is the right code.
As mentioned, this isn't a math site, so try to give code or something showing some effort.
However, the first step you need to do is turn the DE into normal form (i.e., no 2nd derivatives). You do this by making a separate variable equal to the derivative. Then, you use
syms x y % or any variable instead of x or y
to define variables as symbolic. Use matlabfunction to create a symbolic function based on these variables. Finally, you can use the ode45 function to solve the symbolic function while passing variable values. I recommend you look up the full documentation in matlab in order to understand it better, but here is a very basic syntax:
MyFun= matlabFunction(eq,'vars',{x,y});
[xout,yout]=ode45(#(x,Y) MyFun(variables),[variable values],Options);
Hopefully this puts you in the right direction, so try messing around with it and provide code if you need more help.
EDIT:
This is how I would solve the problem. Note: I don't really like the matlabFunction creator but this is simply a personal preference for various reasons I won't go into.
% Seperate function of the first order state equations
function dz = firstOrderEqns(t,z)
dz(4,1) = 0;
dz(1) = -2.*z(3).*z(1).*z(4)./(1 + z(4).^2 + z(2).^2);
dz(2) = z(1);
dz(3) = -2.*z(2).*z(3).*z(1)./(1 + z(4).^2 + z(2).^2);
dz(4) = z(3);
end
% runfirstOrderEqns
%% Initial conditions i.e. # t=0
z1 = 5; % dy/dt = 5 (you didn't specify these initial conditions,
% these will depend on the system which you didn't really specify
z2 = 0; % y = 0
z3 = 5; % dx/dt = 5 (The same as for z1)
z4 = 0; % x = 0
IC = [z1, z2, z3, z4];
%% Run simulation
% Time vector: i.e closed interval [0,20]
t = [0,20]; % This is where you have to know about your system
% i.e what is it's time domain.
% Note: when a system has unstable poles at
% certain places the solver can crash you need
% to understand these.
% using default settings (See documentation ode45 for 'options')
[T,Y] = ode45(#firstOrderEqns,t,IC);
%% Plot function
plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),':',T,Y(:,4),'.');
legend('dy/dt','y','dx/dt','x')
As in my comments I have made a lot of assumtions that you need to fix for example, you didn't specify what the initial conditions for the first derivatives of the states are i.e. (z1, z3) which is important for the response of the system. Also you didn't specify the time interval your interested for the simulation etc.
Note: The second m file can be used with any state function in the correct format
The following is the answer we finally get #Chriso: use matlab bvp4c function to solve this boundary value problem (Suppose the two boundry value conditions are: when t=0: x=1, y=3; when t=1, x=6, y=9. x is x(1), y is x(2) ):
1. bc.m
function res = bc(ya,yb)
res = [ ya(1)-1; ya(2)-3; yb(1) - 6; yb(2)-9];
end
2. ode.m
function dydx = ode(t,x)
dydx = [x(3); x(4); x(2)/x(1)*(-2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2)); -2*x(1)*x(3)*x(4)/(1+x(1)^2+x(2)^2)];
end
3. mainBVP.m
solinit = bvpinit(linspace(0,6,10),[1 0 -1 0]);
sol = bvp4c(#ode,#bc,solinit);
t = linspace(0,6);
x = deval(sol,t);
plot(t,x(1,:));
hold on
plot(t,x(2,:));
plot(t,x(3,:));
plot(t,x(4,:));
x(1,:)
x(2,:)

Matlab smooth a 3d mesh plot

Hi I have a set of data A with each element corresponding to an x and y combination. When I plot this dat using mesh I get a graph with many spikes on it. This is not unnexpected but I would like a way to smooth these out to get a smooth surface.
I've tried to use the smooth3 command but cannot figure out how to make the suitable input.
Any help would be appreciated. Thanks
This is how my data is generated.
function v = f(x,y) % Not actual function
return x*rand()+y*rand()
end
x = 0.05:0.01:0.95;
y = 0.05:0.01:0.95;
o = zeros(length(x),length(y));
A = zeros(length(x), length(y));
for k = 1:5
for i = 1:length(x)
for j = 1:length(y)
o(i,j) = f([x(i), y(j)]);
end
end
A= A+o;
end
A = A/5;
This is what produces the plot.
[X,Y] = meshgrid(x);
mesh(A)
my be you can try a convolution of your variable A with a filter(the following is an example of a Gaussian filter).
C = conv2(A,fspecial('gaussian', hsize, sigma));
check conv2 and fspecial in matlab help