historic data storage and retrieval - kdb

I am using a standard splayed format for my trade data where i have directories for each date and each column as separate file in there.
I am reading from csv files and storing using the below code. I am using the trial version 32 bit on win 7, 64 bit.
readDat: {[x]
tmp: read data from csv file(x)
tmp: `sym`time`trdId xasc tmp;
/trd: update `g#sym from trd;
trade:: trd;
.Q.dpft[`:/kdb/ndb; dt; `sym; `trade];
.Q.gc[];
};
\t readDat each 50#dtlist
I have tried both using the `g#sym and without it. Data has typically 1.5MM rows per date. select time for this is from 0.5 to 1 second for a day
Is there a way to improve times for either of the below queries.
\t select from trade where date=x
\t select from trade where date=x, sym=y
I have read the docs on segmentation, partitioning etc. but not sure if anything would help here.
On second thoughts, will creating a table for each sym speed up things? I am trying that out but wanted to know if there are memory/space tradeoffs i should be aware of.

Have you done any profiling to see what the actual bottleneck is? If you find that the problem has to do with disk read speed (using something like iostat) you can either get a faster disk (SSD), more memory (for bigger disk cache), or use par.txt to shard your database across multiple disks such that the query happens on multiple disks and cores in parallel.

As you are using .Q.dpft, you are already partitioning your DB. If your use case is always to pass one date in your queries, then segmenting by date will not provide any performance improvements. You could possibly segment by symbol range (see here), although this is never something I've tried.
One basic way to improve performance would be to select a subset of the columns. Do you really need to read all of the fields when querying? Depending on the width of your table this can have a large impact as it now can ignore some files completely.
Another way to improve performance would be to apply `u# to the sym file. This will speed up your second query as the look up on the sym file will be faster. Although this really depends on the size of your universe. The benefit of this would be marginal in comparison to reducing the number of columns requested I would imagine.

As user1895961 mentioned, selecting only certain columns will be faster.
KDB splayed\partitioned tables are almost exactly just files on the filesystem, the smaller the files and the fewer you have to read, the faster it will be. The balance between the number of folders and the number of files is key. 1.5mln per partition is ok, but is on the large side. Perhaps you might want to partition by something else.
You may also want to normalise you data, splitting it into multiple tables and using linked columns to join it back again on the fly. Linked columns, if set up correctly, can be very powerful and can help avoid reading too much data back from disk if filtering is added in.
Also try converting your data to char instead of sym, i found big performance increases from doing so.

Related

How do I efficiently execute large queries?

Consider the following demo schema
trades:([]symbol:`$();ccy:`$();arrivalTime:`datetime$();tradeDate:`date$(); price:`float$();nominal:`float$());
marketPrices:([]sym:`$();dateTime:`datetime$();price:`float$());
usdRates:([]currency$();dateTime:`datetime$();fxRate:`float$());
I want to write a query that gets the price, translated into USD, at the soonest possible time after arrivalTime. My beginner way of doing this has been to create intermediate tables that do some filtering and translating column names to be consistent and then using aj and ajo to join them up.
In this case there would only be 2 intermediate tables. In my actual case there are necessarily 7 intermediate tables and records counts, while not large by KDB standards, are not small either.
What is considered best practice for queries like this? It seems to me that creating all these intermediate tables is resource hungry. An alternative to the intermediate tables is 2 have a very complicated looking single query. Would that actually help things? Or is this consumption of resources just the price to pay?
For joining to the next closest time after an event take a look at this question:
KDB reverse asof join (aj) ie on next quote instead of previous one
Assuming that's what your looking for then you should be able to perform your price calculation either before or after the join (depending on the size of your tables it may be faster to do it after). Ultimately I think you will need two (potentially modified as per above) aj's (rates to marketdata, marketdata to trades).
If that's not what you're looking for then I could give some more specifics although some sample data would be useful.
My thoughts:
The more verbose/readible your code, the better for you to debug later and any future readers/users of your code.
Unless absolutely necessary, I would try and avoid creating 7 copies of the same table. If you are dealing with large tables memory could quickly become a concern. Particularly if the processing takes a long time, you could be creating large memory spikes. I try to keep to updating 1-2 variables at different stages e.g.:
res: select from trades;
res:aj[`ccy`arrivalTime;
res;
select ccy:currency, arrivalTime:dateTime, fxRate from usdRates
]
res:update someFunc fxRate from res;
Sean beat me to it, but aj for a time after/ reverse aj is relatively straight forward by switching bin to binr in the k code. See the suggested answer.
I'm not sure why you need 7 intermediary tables unless you are possibly calculating cross rates? In this case I would typically join ccy1 and ccy2 with 2 ajs to the same table and take it from there.
Although it may be unavoidable in your case if you have no control over the source data, similar column names / greater consistency across schemas is generally better. e.g. sym vs symbol

What about expected performance in Pentaho?

I am using Pentaho to create ETL's and I am very focused on performance. I develop an ETL process that copy 163.000.000 rows from Sql server 2088 to PostgreSQL and it takes 17h.
I do not know how good or bad is this performance. Do you know how to measure if the time that takes some process is good? At least as a reference to know if I need to keep working heavily on performance or not.
Furthermore, I would like to know if it is normal that in the first 2 minutes of ETL process it load 2M rows. I calculate how long will take to load all the rows. The expected result is 6 hours, but then the performance decrease and it takes 17h.
I have been investigating in goole and I do not find any time references neither any explanations about performance.
Divide and conquer, and proceed by elimination.
First, add a LIMIT to your query so it takes 10 minutes instead of 17 hours, this will make it a lot easier to try different things.
Are the processes running on different machines? If so, measure network bandwidth utilization to make sure it isn't a bottleneck. Transfer a huge file, make sure the bandwidth is really there.
Are the processes running on the same machine? Maybe one is starving the other for IO. Are source and destination the same hard drive? Different hard drives? SSDs? You need to explain...
Examine IO and CPU usage of both processes. Does one process max out one cpu core?
Does a process max out one of the disks? Check iowait, iops, IO bandwidth, etc.
How many columns? Two INTs, 500 FLOATs, or a huge BLOB with a 12 megabyte PDF in each row? Performance would vary between these cases...
Now, I will assume the problem is on the POSTGRES side.
Create a dummy table, identical to your target table, which has:
Exact same columns (CREATE TABLE dummy LIKE table)
No indexes, No constraints (I think it is the default, double check the created table)
BEFORE INSERT trigger on it which returns NULL and drop the row.
The rows will be processed, just not inserted.
Is it fast now? OK, so the problem was insertion.
Do it again, but this time using an UNLOGGED TABLE (or a TEMPORARY TABLE). These do not have any crash-resistance because they don't use the journal, but for importing data it's OK.... if it crashes during the insert you're gonna wipe it out and restart anyway.
Still No indexes, No constraints. Is it fast?
If slow => IO write bandwidth issue, possibly caused by something else hitting the disks
If fast => IO is OK, problem not found yet!
With the table loaded with data, add indexes and constraints one by one, find out if you got, say, a CHECK that uses a slow SQL function, or a FK into a table which has no index, that kind of stuff. Just check how long it takes to create the constraint.
Note: on an import like this you would normally add indices and constraints after the import.
My gut feeling is that PG is checkpointing like crazy due to the large volume of data, due to too-low checkpointing settings in the config. Or some issue like that, probably random IO writes related. You put the WAL on a fast SSD, right?
17H is too much. Far too much. For 200 Million rows, 6 hours is even a lot.
Hints for optimization:
Check the memory size: edit the spoon.bat, find the line containing -Xmx and change it to half your machine memory size. Details varies with java version. Example for PDI V7.1.
Check if the query from the source database is not too long (because too complex, or server memory size, or ?).
Check the target commit size (try 25000 for PostgresSQL), the Use batch update for inserts in on, and also that the index and constraints are disabled.
Play with the Enable lazy conversion in the Table input. Warning, you may produce difficult to identify and debug errors due to data casting.
In the transformation property you can tune the Nr of rows in rowset (click anywhere, select Property, then the tab Miscelaneous). On the same tab check the transformation is NOT transactional.

Performance improvement for fetching records from a Table of 10 million records in Postgres DB

I have a analytic table that contains 10 million records and for producing charts i have to fetch records from analytic table. several other tables are also joined to this table and data is fetched currently But it takes around 10 minutes even though i have indexed the joined column and i have used Materialized views in Postgres.But still performance is very low it takes 5 mins for executing the select query from Materialized view.
Please suggest me some technique to get the result within 5sec. I dont want to change the DB storage structure as so much of code changes has to be done to support it. I would like to know if there is some in built methods for query speed improvement.
Thanks in Advance
In general you can take care of this issue by creating a better data structure(Most engines do this to an extent for you with keys).
But if you were to create a sorting column of sorts. and create a tree like structure then you'd be left to a search rate of (N(log[N]) rather then what you may be facing right now. This will ensure you always have a huge speed up in your searches.
This is in regards to binary tree's, Red-Black trees and so on.
Another implementation for a speedup may be to make use of something allong the lines of REDIS, ie - a nice database caching layer.
For analytical reasons in the past I have also chosen to make use of technologies related to hadoop. Though this may be a larger migration in your case at this point.

Billions rows in PostgreSql: partition or not to partition?

What i have:
Simple server with one xeon with 8 logic cores, 16 gb ram, mdadm raid1 of 2x 7200rpm drives.
PostgreSql
A lot of data to work with. Up to 30 millions of rows are being imported per day.
Time - complex queries can be executed up to an hour
Simplified schema of table, that will be very big:
id| integer | not null default nextval('table_id_seq'::regclass)
url_id | integer | not null
domain_id | integer | not null
position | integer | not null
The problem with the schema above is that I don't have the exact answer on how to partition it.
Data for all periods is going to be used (NO queries will have date filters).
I thought about partitioning on "domain_id" field, but the problem is that it is hard to predict how many rows each partition will have.
My main question is:
Does is make sense to partition data if i don't use partition pruning and i am not going to delete old data?
What will be pros/cons of that ?
How will degrade my import speed, if i won't do partitioning?
Another question related to normalization:
Should url be exported to another table?
Pros of normalization
Table is going to have rows with average size of 20-30 bytes.
Joins on "url_id" are supposed to be much faster than on "url" field
Pros of denormalization
Data can be imported much, much faster, as i don't have to make lookup into "url" table before each insert.
Can anybody give me any advice? Thanks!
Partitioning is most useful if you are going to either have selection criteria in most queries which allow the planner to skip access to most of the partitions most of the time, or if you want to periodically purge all rows that are assigned to a partition, or both. (Dropping a table is a very fast way to delete a large number of rows!) I have heard of people hitting a threshold where partitioning helped keep indexes shallower, and therefore boost performance; but really that gets back to the first point, because you effectively move the first level of the index tree to another place -- it still has to happen.
On the face of it, it doesn't sound like partitioning will help.
Normalization, on the other hand, may improve performance more than you expect; by keeping all those rows narrower, you can get more of them into each page, reducing overall disk access. I would do proper 3rd normal form normalization, and only deviate from that based on evidence that it would help. If you see a performance problem while you still have disk space for a second copy of the data, try creating a denormalized table and seeing how performance is compared to the normalized version.
I think it makes sense, depending on your use cases. I don't know how far back in time your 30B row history goes, but it makes sense to partition if your transactional database doesn't need more than a few of the partitions you decide on.
For example, partitioning by month makes perfect sense if you only query for two months' worth of data at a time. The other ten months of the year can be moved into a reporting warehouse, keeping the transactional store smaller.
There are restrictions on the fields you can use in the partition. You'll have to be careful with those.
Get a performance baseline, do your partition, and remeasure to check for performance impacts.
With the given amount of data in mind, you'll be waiting on IO mostly. If possible, perform some tests with different HW configurations trying to get best IO figures for your scenarios. IMHO, 2 disks will not be enough after a while, unless there's something else behind the scenes.
Your table will be growing daily with a known ratio. And most likely it will be queried daily. As you haven't mentioned data being purged out (if it will be, then do partition it), this means that queries will run slower each day. At some point in time you'll start looking at how to optimize your queries. One of the possibilities is to parallelize query on the application level. But here some conditions should be met:
your table should be partitioned in order to parallelize queries;
HW should be capable of delivering the requested amount of IO in N parallel streams.
All answers should be given by the performance tests of different setups.
And as others mentioned, there're more benefits for DBA in partitioned tables, so I, personally, would go for partitioning any table that is expected to receive more then 5M rows per interval, be it day, week or month.

realtime querying/aggregating millions of records - hadoop? hbase? cassandra?

I have a solution that can be parallelized, but I don't (yet) have experience with hadoop/nosql, and I'm not sure which solution is best for my needs. In theory, if I had unlimited CPUs, my results should return back instantaneously. So, any help would be appreciated. Thanks!
Here's what I have:
1000s of datasets
dataset keys:
all datasets have the same keys
1 million keys (this may later be 10 or 20 million)
dataset columns:
each dataset has the same columns
10 to 20 columns
most columns are numerical values for which we need to aggregate on (avg, stddev, and use R to calculate statistics)
a few columns are "type_id" columns, since in a particular query we may
want to only include certain type_ids
web application
user can choose which datasets they are interested in (anywhere from 15 to 1000)
application needs to present: key, and aggregated results (avg, stddev) of each column
updates of data:
an entire dataset can be added, dropped, or replaced/updated
would be cool to be able to add columns. But, if required, can just replace the entire dataset.
never add rows/keys to a dataset - so don't need a system with lots of fast writes
infrastructure:
currently two machines with 24 cores each
eventually, want ability to also run this on amazon
I can't precompute my aggregated values, but since each key is independent, this should be easily scalable. Currently, I have this data in a postgres database, where each dataset is in its own partition.
partitions are nice, since can easily add/drop/replace partitions
database is nice for filtering based on type_id
databases aren't easy for writing parallel queries
databases are good for structured data, and my data is not structured
As a proof of concept I tried out hadoop:
created a tab separated file per dataset for a particular type_id
uploaded to hdfs
map: retrieved a value/column for each key
reduce: computed average and standard deviation
From my crude proof-of-concept, I can see this will scale nicely, but I can see hadoop/hdfs has latency I've read that that it's generally not used for real time querying (even though I'm ok with returning results back to users in 5 seconds).
Any suggestion on how I should approach this? I was thinking of trying HBase next to get a feel for that. Should I instead look at Hive? Cassandra? Voldemort?
thanks!
Hive or Pig don't seem like they would help you. Essentially each of them compiles down to one or more map/reduce jobs, so the response cannot be within 5 seconds
HBase may work, although your infrastructure is a bit small for optimal performance. I don't understand why you can't pre-compute summary statistics for each column. You should look up computing running averages so that you don't have to do heavy weight reduces.
check out http://en.wikipedia.org/wiki/Standard_deviation
stddev(X) = sqrt(E[X^2]- (E[X])^2)
this implies that you can get the stddev of AB by doing
sqrt(E[AB^2]-(E[AB])^2). E[AB^2] is (sum(A^2) + sum(B^2))/(|A|+|B|)
Since your data seems to be pretty much homogeneous, I would definitely take a look at Google BigQuery - You can ingest and analyze the data without a MapReduce step (on your part), and the RESTful API will help you create a web application based on your queries. In fact, depending on how you want to design your application, you could create a fairly 'real time' application.
It is serious problem without immidiate good solution in the open source space. In commercial space MPP databases like greenplum/netezza should do.
Ideally you would need google's Dremel (engine behind BigQuery). We are developing open source clone, but it will take some time...
Regardless of the engine used I think solution should include holding the whole dataset in memory - it should give an idea what size of cluster you need.
If I understand you correctly and you only need to aggregate on single columns at a time
You can store your data differently for better results
in HBase that would look something like
table per data column in today's setup and another single table for the filtering fields (type_ids)
row for each key in today's setup - you may want to think how to incorporate your filter fields into the key for efficient filtering - otherwise you'd have to do a two phase read (
column for each table in today's setup (i.e. few thousands of columns)
HBase doesn't mind if you add new columns and is sparse in the sense that it doesn't store data for columns that don't exist.
When you read a row you'd get all the relevant value which you can do avg. etc. quite easily
You might want to use a plain old database for this. It doesn't sound like you have a transactional system. As a result you can probably use just one or two large tables. SQL has problems when you need to join over large data. But since your data set doesn't sound like you need to join, you should be fine. You can have the indexes setup to find the data set and the either do in SQL or in app math.