I am trying to interpolate the following function using the MATLAB function spline,
at equidistant points xi = i./n, i = 0,1,...,n, and for n = 2^j, j = 4,5,...,14.
For each calculation, I record the maximum error at the points x = 0:0.001:1 and plot these errors against n using a loglog plot.
Below is the code,
index=1
for j = 4:1:14;
n = 2^j;
i = 0:1:n;
xi = i./n;
yi = ((exp(3*xi))*sin(200.*(xi.^2))) ./(1+20.*(xi.^2));
x = 0:.001:1;
ye = ((exp(3*x))*sin(200*x.^2)) ./(1+20*x.^2);
yp = spline(x,xi,yi);
err = ye - yp;
merr(index) = max(err);
index = index+1;
end
n1 = 10:10:170;
loglog(n1, merr,'.')
xlabel('n');
ylabel('errors');
title('Cubic Splines');
but when I run the code, I got the following error:
Error using * Inner matrix dimensions must agree.
Error in (line 9) yi = ((exp(3*xi))sin(200.(xi.^2)))
./(1+20.*(xi.^2));
I'm just starting learning MatLab, can anyone help?
You want element-wise multiplication (.*) for the following part of code:
yi = ((exp(3*xi))*sin(200.*(xi.^2))) ./(1+20.*(xi.^2));
should be
yi = ((exp(3*xi)).*sin(200.*(xi.^2))) ./(1+20.*(xi.^2));
The same issue is present for the computation of ye.
When you use mtimes (*), MATLAB tries to do matrix multiplication, which in your case (1-by-n times 1-by-n) is invalid.
Then you will run into a problem with your spline command. Change it to yp = spline(xi,yi,x); so that the values at which you want to interploate (x) are the last argument.
Related
I have many sets of data over the same time period, with a timestep of 300 seconds. Sets that terminate before the end of the observation period (here I've truncated it to 0 to 3000 seconds) have NaNs in the remaining spaces:
x = [0;300;600;900;1200;1500;1800;2100;2400;2700;3000];
y(:,1) = [4.65;3.67;2.92;2.39;2.02;1.67;1.36;1.07;NaN;NaN;NaN];
y(:,2) = [4.65;2.65;2.33;2.18;2.03;1.89;1.75;1.61;1.48;1.36;1.24];
y(:,3) = [4.65;2.73;1.99;1.49;1.05;NaN;NaN;NaN;NaN;NaN;NaN];
I would like to know at what time each dataset would reach the point where y is equal to a specific value, in this case y = 2.5
I first tried finding the nearest y value to 2.5, and then using the associated time, but this isn't very accurate (the dots should all fall on the same horizontal line):
ybreak = 2.5;
for ii = 1:3
[~, index] = min(abs(y(:,ii)-ybreak));
yclosest(ii) = y(index,ii);
xbreak(ii) = x(index);
end
I then tried doing a linear interpolation between data points, and then solving for x at y=2.5, but wasn't able to make this work:
First I removed the NaNs (which it seems like there must be a simpler way of doing?):
for ii = 1:3
NaNs(:,ii) = isnan(y(:,ii));
for jj = 1:length(x);
if NaNs(jj,ii) == 0;
ycopy(jj,ii) = y(jj,ii);
end
end
end
Then tried fitting:
for ii = 1:3
f(ii) = fit(x(1:length(ycopy(:,ii))),ycopy(:,ii),'linearinterp');
end
And get the following error message:
Error using cfit/subsasgn (line 7)
Can't assign to an empty FIT.
When I try fitting outside the loop (for just one dataset), it works fine:
f = fit(x(1:length(ycopy(:,1))),ycopy(:,1),'linearinterp');
f =
Linear interpolant:
f(x) = piecewise polynomial computed from p
Coefficients:
p = coefficient structure
But I then still can't solve f(x)=2.5 to find the time at which y=2.5
syms x;
xbreak = solve(f(x) == 2.5,x);
Error using cfit/subsref>iParenthesesReference (line 45)
Cannot evaluate CFIT model for some reason.
Error in cfit/subsref (line 15)
out = iParenthesesReference( obj, currsubs );
Any advice or thoughts on other approaches to this would be much appreciated. I need to be able to do it for many many datasets, all of which have different numbers of NaN values.
As you mention y=2.5 is not in your data set so the value of x which corresponds to this depends on the interpolation method you use. For linear interpolation, you could use something like the following
x = [0;300;600;900;1200;1500;1800;2100;2400;2700;3000];
y(:,1) = [4.65;3.67;2.92;2.39;2.02;1.67;1.36;1.07;NaN;NaN;NaN];
y(:,2) = [4.65;2.65;2.33;2.18;2.03;1.89;1.75;1.61;1.48;1.36;1.24];
y(:,3) = [4.65;2.73;1.99;1.49;1.05;NaN;NaN;NaN;NaN;NaN;NaN];
N = size(y, 2);
x_interp = NaN(N, 1);
for i = 1:N
idx = find(y(:,i) >= 2.5, 1, 'last');
x_interp(i) = interp1(y(idx:idx+1, i), x(idx:idx+1), 2.5);
end
figure
hold on
plot(x, y)
scatter(x_interp, repmat(2.5, N, 1))
hold off
It's worth keeping in mind that the above code is assuming your data is monotonically decreasing (as your data is), but this solution could be adapted for monotonically increasing as well.
I wonder whether MATLAB has a toolbox to do common matrixial operation with sparse matrices.
Using a dense matrix, I can compute the correlogram matrix doing:
R = rand(10,100)
[r,p] = corr(R)
With sparse matrix I would love to do:
S = sprand(10,100,.2)
[r,p] = corr(S)
However, the following error is elicited:
Error using betainc
Inputs must be real, full, and double or single.
Error in tcdf (line 70)
p(t) = betainc(xsq(t) ./ (v(t) + xsq(t)), 0.5, v(t)/2, 'upper') / 2;
Error in corr>pvalPearson (line 720)
p = 2*tcdf(-abs(t),n-2);
Error in corr>corrPearson (line 321)
pval(ltri) = pvalPearson(tail, coef(ltri), n);
Error in corr (line 204)
[coef,pval] = corrFun(rows,tail,x);
Can anyone help me?
Cmon ppl, let's do some math! Let x be a random vector. An entry in the correlation matrix CORR(x_i, x_j) is given by:
CORR(x_i, x_j) = COV(x_i, x_j) / (SQRT(VAR(x_i)) *SQRT(VAR(x_j));
That is, to build our correlation matrix, we need the covariance matrix, which also gives us the individual variances. Formula for covariance: COV(x) = E[x*x'] - E[x]E[x]'. We can then approximate the the population moments E[x*x'] with the sample moments (i.e. X'*X/n and mean(X))
Hence the following Matlab code:
[n, k] = size(X);
Exxprim = full(X'*X)/n; %I'm shocked if this isn't full so let's drop sparse now
Ex = full(mean(X))'; %same deal
COVX = (Exxprim - Ex*Ex');
STDEVX = sqrt(diag(COVX));
CORRX = COVX ./ (STDEVX * STDEVX');
This may help if X'*X and mean(X) can be done more efficiently because X is sparse.
I am trying to compute the value of this integral using Matlab
Here the other parameters have been defined or computed in the earlier part of the program as follows
N = 2;
sigma = [0.01 0.1];
l = [15];
meu = 4*pi*10^(-7);
f = logspace ( 1, 6, 500);
w=2*pi.*f;
for j = 1 : length(f)
q2(j)= sqrt(sqrt(-1)*2*pi*f(j)*meu*sigma(2));
q1(j)= sqrt(sqrt(-1)*2*pi*f(j)*meu*sigma(1));
C2(j)= 1/(q2(j));
C1(j)= (q1(j)*C2(j) + tanh(q1(j)*l))/(q1(j)*(1+q1(j)*C2(j)*tanh(q1(j)*l)));
Z(j) = sqrt(-1)*2*pi*f(j)*C1(j);
Apprho(j) = meu*(1/(2*pi*f(j))*(abs(Z(j))^2));
Phi(j) = atan(imag(Z(j))/real(Z(j)));
end
%integration part
c1=w./(2*pi);
rho0=1;
fun = #(x) log(Apprho(x)/rho0)/(x.^2-w^2);
c2= integral(fun,0,Inf);
phin=pi/4-c1.*c2;
I am getting an error like this
could anyone help and tell me where i am going wrong.thanks in advance
Define Apprho in a separate *.m function file, instead of storing it in an array:
function [ result ] = Apprho(x)
%
% Calculate f and Z based on input argument x
%
% ...
%
meu = 4*pi*10^(-7);
result = meu*(1/(2*pi*f)*(abs(Z)^2));
end
How you calculate f and Z is up to you.
MATLAB's integral works by calling the function (in this case, Apprho) repeatedly at many different x values. The x values called by integral don't necessarily correspond to the 1: length(f) values used in your original code, which is why you received errors.
I am having difficulty in finding roots of a nonlinear equation. I have tried Matlab and Maple both, and both give me the same error which is
Error, (in RootFinding:-NextZero) can only handle isolated zeros
The equation goes like
-100 + 0.1335600000e-5*H + (1/20)*H*arcsinh(2003.40/H)
The variable is H in the equation.
How do I find the roots (or the approximate roots) of this equation?
Matlab Code:
The function file:
function hor_force = horizontal(XY, XZ, Lo, EAo, qc, VA)
syms H
equation = (-1*ZZ) + (H/qc)*(cosh((qc/H)*(XZ- XB))) - H/qc + ZB;
hor_force = `solve(equation);`
The main file:
EAo = 7.5*10^7;
Lo = 100.17;
VA = 2002;
XY = 0;
ZY = 0;
XB = 50;
ZB = -2;
XZ = 100;
ZZ = 0;
ql = 40;
Error which Matlab shows:
Error using sym/solve (line 22)
Error using maplemex
Error, (in RootFinding:-NextZero) can only handle isolated zeros
Error in horizontal (line 8)
hor_force = solve(equation);
Error in main (line 34)
h = horizontal(XY, XZ, Lo, EAo, ql, VA)
http://postimg.org/image/gm93z3b7z/
You don't need the symbolic toolbox for this:
First, create an anonymous function that can take vectors at input (use .* and ./:
equation = #(H) ((-1*ZZ) + (H./qc).*(cosh((qc./H).*(XZ- XB))) - H./qc + ZB);
Second, create a vector that you afterwards insert into the equation to find approximately when the sign of the function changes. In the end, use fzero with x0 as the second input parameter.
H = linspace(1,1e6,1e4);
x0 = H(find(diff(sign(equation(H))))); %// Approximation of when the line crosses zero
x = fzero(equation, x0) %// Use fzero to find the crossing point, using the initial guess x0
x =
2.5013e+04
equation(x)
ans =
0
To verify:
You might want to check out this question for more information about how to find roots of non-polynomials.
In Maple, using the expression from your question,
restart:
ee := -100 + 0.1335600000e-5*H + (1/20)*H*arcsinh(2003.40/H):
Student:-Calculus1:-Roots(ee, -1e6..1e6);
[ 5 ]
[-1.240222868 10 , -21763.54830, 18502.23816]
#plot(ee, H=-1e6..1e6, view=-1..1);
I am using numerical integration in MATLAB, with one varibale to integrate over but the function also contains a variable number of terms depending on the dimension of my data. Right now this looks like the following for the 2-dimensional case:
for t = 1:T
fxt = #(u) exp(-0.5*(x(t,1)-theta*norminv(u,0,1)).^2) .* ...
exp(-0.5*(x(t,2) -theta*norminv(u,0,1)).^2);
f(t) = integral(fxt,1e-4,1-1e-4,'AbsTol',1e-3);
end
I would like to have this function flexible in the sense that there could be any number of data points in, each in the following term:
exp(-0.5*(x(t,i) -theta*norminv(u,0,1)).^2);
I hope this is understandable.
If x and u have a valid dimension match (vector-vector or array-scalar) for the subtraction, you can put the whole matrix x into the handle and pass it to the integral function using the name-parameter pair ('ArrayValued',true):
fxt = #(u) exp(-0.5*(x - theta*norminv(u,0,1)).^2) .* ...
exp(-0.5*(x - theta*norminv(u,0,1)).^2);
f = integral(fxt,1e-4,1-1e-4,'AbsTol',1e-3,'ArrayValued',true);
[Documentation]
You may need a loop if integral ever passes a vector u into the handle.
But in looking at how the integral function is written, the integration nodes are entered as scalars for array-valued functions, so the loop shouldn't be necessary unless some weird dimension-mismatch error is thrown.
Array-Valued Output
In response to the comments below, you could try this function handle:
fx = #(u,t,k) prod(exp(-0.5*(x(t,1:k)-theta*norminv(u,0,1)).^2),2);
Then your current loop would look like
fx = #(u,t,k) prod(exp(-0.5*(x(t,1:k)-theta*norminv(u,0,1)).^2),2);
k = 2;
for t = 1:T
f(t) = integral(#(u)fx(u,t,k),1e-4,1-1e-4,'AbsTol',1e-3,'ArrayValued',true);
end
The ArrayValued flag is needed since x and u will have a dimension mismatch.
In this form, another loop would be needed to sweep through the k indexes.
However, we can improve this function by skipping the loop altogether since each iterate of the loop is independent by using the ArrayValued mode:
fx = #(u,k) prod(exp(-0.5*(x(:,1:k)-theta*norminv(u,0,1)).^2),2);
k = 2;
f = integral(#(u)fx(u,k),1e-4,1-1e-4,'AbsTol',1e-3,'ArrayValued',true);
Vector-Valued Output
If ArrayValued is not desired, which may be the case if the integration requires a lot of subdivisions and a vector-valued u is preferable, you can also try a recursive version of the handle using cell arrays:
% x has size [T,K]
fx = cell(K,1);
fx{1} = #(u,t) exp(-0.5*(x(t,1) - theta*norminv(u,0,1)).^2);
for k = 2:K
fx{k} = #(u,t) fx{k-1}(u,t).*exp(-0.5*(x(t,k) - theta*norminv(u,0,1)).^2);
end
f(T) = 0;
k = 2;
for t = 1:T
f(t) = integral(#(u)fx{k}(u,t),1e-4,1-1e-4,'AbsTol',1e-3);
end
ThanksTroy but now I run into the follwing:
x = [0.3,0.8;1.5,-0.7];
T = size(x,1);
k = size(x,2);
theta= 1;
fx = #(u,t,k) prod(exp(-0.5*(x(t,1:k) - theta*norminv(u,0,1))^2));
for t = 1,T
f(t) = integral(#(u)fx(u,t,k),1e-4,1-1e-4,'AbsTol',1e-3);
end
Error using -
Matrix dimensions must agree.
Error in #(u,t,k)prod(exp(-0.5*(x(t,1:k)-theta*norminv(u,0,1))^2))
Error in #(u)fx(u,t,k)
Error in integralCalc/iterateScalarValued (line 314)
fx = FUN(t);
Error in integralCalc/vadapt (line 133)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen);
Error in integralCalc (line 76)
[q,errbnd] = vadapt(#AtoBInvTransform,interval);
Error in integral (line 89)
Q = integralCalc(fun,a,b,opstruct);