Converting to for loop - matlab

How can I convert this code to a for loop so if I could add more forces and moments? This is a lot code and its basically computing the unit vector and finding the sum of the forces in the x direction, y direction and z direction and doing the same for the moments.
This is only for one particular case so I want to put it in a for loop so when new forces are applied they will be accounted for.
Any help or nudge in the right direction would be a huge help! Thanks in advance.
load ('inputdata.mat')
A= zeros(6,6);
B= zeros (6,1);
% Calculate Force in x,y,z direction, sums them and puts them in the B
% vector positions 1,2,3
NF1=((ForceDir(1,2))^2+(ForceDir(1,3))^2+(ForceDir(1,4))^2)^(1/2);
F1i=(ForceDir(1,2)/NF1)* ForceDir(1,1);
F1j=(ForceDir(1,3)/NF1)* ForceDir(1,1);
F1k=(ForceDir(1,4)/NF1)*ForceDir(1,1);
NF2= ((ForceDir(2,2))^2+(ForceDir(2,3))^2+(ForceDir(2,4))^2)^(1/2);
F2i=(ForceDir(2,2)/NF2)* ForceDir(2,1);
F2j=(ForceDir(2,3)/NF2)* ForceDir(2,1);
F2k=(ForceDir(2,4)/NF2)* ForceDir(2,1);
B(1,1)= F1i+F2i; %External Force in x
B(2,1)= F1j+F2j; %External Force in y
B(3,1)= F1k+F2k; %External Force in z
% Calculate Moments in x,y,z direction and puts them in B vector
% position 3,4,5
unitvectorForce1=[F1i F1j F1k];
MomentByForce1= cross(ForceCoor(1,:),unitvectorForce1);
unitvectorForce2= [F2i F2j F2k];
MomentByForce2= cross(ForceCoor(2,:),unitvectorForce2);
MomentNormal=((DirMoment(1,2))^2+(DirMoment(1,3))^2+(DirMoment(1,4))^2)^(1/2);
M1i= (DirMoment(1,2)/MomentNormal)*DirMoment(1,1);
M1j= (DirMoment(1,3)/MomentNormal)*DirMoment (1,1);
M1k= (DirMoment(1,4)/MomentNormal)*DirMoment(1,1);
unitvectorMoment= [M1i M1j M1k];
B(4,1)= MomentByForce1(1)+MomentByForce2(1)+ unitvectorMoment(1)
B(5,1)= MomentByForce1(2)+MomentByForce2(2)+ unitvectorMoment(2)
B(6,1)= MomentByForce1(3)+MomentByForce2(3)+ unitvectorMoment(3)

If I understand you correclty, this should do the trick:
for ii = 1:N
NF(ii) = ((ForceDir(ii,2))^2+(ForceDir(ii,3))^2+(ForceDir(ii,4))^2)^(1/2);
Fi(ii) = ForceDir(ii,2) / NF(ii) * ForceDir(ii,1);
Fj(ii) = ForceDir(ii,3) / NF(ii) * ForceDir(ii,1);
Fk(ii) = ForceDir(ii,4) / NF(ii) * ForceDir(ii,1);
%% Etc
end

Related

Which Bins are occupied in a 3D histogram in MatLab

I got 3D data, from which I need to calculate properties.
To reduce computung I wanted to discretize the space and calculate the properties from the Bin instead of the individual data points and then reasign the propertie caclulated from the bin back to the datapoint.
I further only want to calculate the Bins which have points within them.
Since there is no 3D-binning function in MatLab, what i do is using histcounts over each dimension and then searching for the unique Bins that have been asigned to the data points.
a5pre=compositions(:,1);
a7pre=compositions(:,2);
a8pre=compositions(:,3);
%% BINNING
a5pre_edges=[0,linspace(0.005,0.995,19),1];
a5pre_val=(a5pre_edges(1:end-1) + a5pre_edges(2:end))/2;
a5pre_val(1)=0;
a5pre_val(end)=1;
a7pre_edges=[0,linspace(0.005,0.995,49),1];
a7pre_val=(a7pre_edges(1:end-1) + a7pre_edges(2:end))/2;
a7pre_val(1)=0;
a7pre_val(end)=1;
a8pre_edges=a7pre_edges;
a8pre_val=a7pre_val;
[~,~,bin1]=histcounts(a5pre,a5pre_edges);
[~,~,bin2]=histcounts(a7pre,a7pre_edges);
[~,~,bin3]=histcounts(a8pre,a8pre_edges);
bins=[bin1,bin2,bin3];
[A,~,C]=unique(bins,'rows','stable');
a5pre=a5pre_val(A(:,1));
a7pre=a7pre_val(A(:,2));
a8pre=a8pre_val(A(:,3));
It seems like that the unique function is pretty time consuming, so I was wondering if there is a faster way to do it, knowing that the line only can contain integer or so... or a totaly different.
Best regards
function [comps,C]=compo_binner(x,y,z,e1,e2,e3,v1,v2,v3)
C=NaN(length(x),1);
comps=NaN(length(x),3);
id=1;
for i=1:numel(x)
B_temp(1,1)=v1(sum(x(i)>e1));
B_temp(1,2)=v2(sum(y(i)>e2));
B_temp(1,3)=v3(sum(z(i)>e3));
C_id=sum(ismember(comps,B_temp),2)==3;
if sum(C_id)>0
C(i)=find(C_id);
else
comps(id,:)=B_temp;
id=id+1;
C_id=sum(ismember(comps,B_temp),2)==3;
C(i)=find(C_id>0);
end
end
comps(any(isnan(comps), 2), :) = [];
end
But its way slower than the histcount, unique version. Cant avoid find-function, and thats a function you sure want to avoid in a loop when its about speed...
If I understand correctly you want to compute a 3D histogram. If there's no built-in tool to compute one, it is simple to write one:
function [H, lindices] = histogram3d(data, n)
% histogram3d 3D histogram
% H = histogram3d(data, n) computes a 3D histogram from (x,y,z) values
% in the Nx3 array `data`. `n` is the number of bins between 0 and 1.
% It is assumed all values in `data` are between 0 and 1.
assert(size(data,2) == 3, 'data must be Nx3');
H = zeros(n, n, n);
indices = floor(data * n) + 1;
indices(indices > n) = n;
lindices = sub2ind(size(H), indices(:,1), indices(:,2), indices(:,3));
for ii = 1:size(data,1)
H(lindices(ii)) = H(lindices(ii)) + 1;
end
end
Now, given your compositions array, and binning each dimension into 20 bins, we get:
[H, indices] = histogram3d(compositions, 20);
idx = find(H);
[x,y,z] = ind2sub(size(H), idx);
reduced_compositions = ([x,y,z] - 0.5) / 20;
The bin centers for H are at ((1:20)-0.5)/20.
On my machine this runs in a fraction of a second for 5 million inputs points.
Now, for each composition(ii,:), you have a number indices(ii), which matches with another number idx[jj], corresponding to reduced_compositions(jj,:). One easy way to make the assignment of results is as follows:
H(H > 0) = 1:numel(idx);
indices = H(indices);
Now for each composition(ii,:), your closest match in the reduced set is reduced_compositions(indices(ii),:).

Plot distances between points matlab

I've made a plot of 10 points
10 10
248,628959661970 66,9462583977501
451,638770451973 939,398361884535
227,712826026548 18,1775336366957
804,449583613070 683,838613746355
986,104241895970 783,736480083219
29,9919502693899 534,137567882728
535,664190667238 885,359450931142
87,0772199008924 899,004898906140
990 990
With the first column as x-coordinates and the other column as y-coordinates
Leading to the following Plot:
Using the following code: scatter(Problem.Points(:,1),Problem.Points(:,2),'.b')
I then also calculated the euclidean distances using Problem.DistanceMatrix = pdist(Problem.Points);
Problem.DistanceMatrix = squareform(Problem.DistanceMatrix);
I replaced the distances by 1*10^6 when they are larger than a certain value.
This lead to the following table:
Then, I would like to plot the lines between the corresponding points, preferably with their distances, but only in case the distance < 1*10^6.
Specifically i want to plot the line [1,2] [1,4] [1,7] [2,4] etc.
My question is, can this be done and how?
Assuming one set of your data is in something called xdata and the other in ydata and then the distances in distances, the following code should accomplish what you want.
hold on
for k = 1:length(xdata)
for j = 1:length(ydata)
if(distances(k,j) < 1e6)
plot([xdata(k) xdata(j)], [ydata(k) ydata(j)]);
end
end
end
You just need to iterate through your matrix and then if the value is less than 1e6, then plot the line between the kth and jth index points. This will however double plot lines, so it will plot from k to j, and also from j to k, but it is quick to code and easy to understand. I got the following plot with this.
This should do the trick:
P = [
10.0000000000000 10.0000000000000;
248.6289596619700 66.9462583977501;
451.6387704519730 939.3983618845350;
227.7128260265480 18.1775336366957;
804.4495836130700 683.8386137463550;
986.1042418959700 783.7364800832190;
29.9919502693899 534.1375678827280;
535.6641906672380 885.3594509311420;
87.0772199008924 899.0048989061400;
990.0000000000000 990.0000000000000
];
P_len = size(P,1);
D = squareform(pdist(P));
D(D > 600) = 1e6;
scatter(P(:,1),P(:,2),'*b');
hold on;
for i = 1:P_len
pi = P(i,:);
for j = 1:P_len
pj = P(j,:);
d = D(i,j);
if ((d > 0) && (d < 1e6))
plot([pi(1) pj(1)],[pi(2) pj(2)],'-r');
end
end
end
hold off;
Final output:
On a side note, the part in which you replaces the distance values trespassing a certain treshold (it looks like it's 600 by looking at your distances matrix) with 1e6 can be avoided by just inserting that threshold into the loop for plotting the lines. I mean... it's not wrong, but I just think it's an unnecessary step.
D = squareform(pdist(P));
% ...
if ((d > 0) && (d < 600))
plot([pi(1) pj(1)],[pi(2) pj(2)],'-r');
end
A friend of mine suggested using gplot
gplot(Problem.AdjM, Problem.Points(:,:), '-o')
With problem.points as the coordinates and Problem.AdjM as the adjacency matrix. The Adjacency matrix was generated like this:
Problem.AdjM=Problem.DistanceMatrix;
Problem.AdjM(Problem.AdjM==1000000)=0;
Problem.AdjM(Problem.AdjM>0)=1;
Since the distances of 1*10^6 was the replacement of a distance that is too large, I put the adjacency there to 0 and all the other to 1.
This lead to the following plot, which was more or less what I wanted:
Since you people have been helping me in such a wonderful way, I just wanted to add this:
I added J. Mel's solution to my code, leading to two exactly the same figures:
Since the figures get the same outcome, both methods should be all right. Furthermore, since Tommasso's and J Mel's outcomes were equal earlier, Tommasso's code must also be correct.
Many thanks to both of you and all other people contributing!

How to interpolate random non monotonic increasing data

So I am working on my Thesis and I need to calculate geometric characteristics of an airfoil.
To do this, I need to interpolate the horizontal and vertical coordinates of an airfoil. This is used for a tool which will calculate the geometric characteristics automatically which come from random airfoil geometry files.
Sometime the Y values of the airfoil are non monotonic. Hence, the interp1 command gives an error since some values in the Y vector are repeated.
Therefore, my question is: How do I recognize and subsequently interpolate non monotonic increasing data automatically in Matlab.
Here is a sample data set:
0.999974 0.002176
0.994846 0.002555
0.984945 0.003283
0.973279 0.004131
0.960914 0.005022
0.948350 0.005919
0.935739 0.006810
0.923111 0.007691
0.910478 0.008564
0.897850 0.009428
0.885229 0.010282
0.872617 0.011125
0.860009 0.011960
0.847406 0.012783
0.834807 0.013598
0.822210 0.014402
0.809614 0.015199
0.797021 0.015985
0.784426 0.016764
0.771830 0.017536
0.759236 0.018297
0.746639 0.019053
0.734038 0.019797
0.721440 0.020531
0.708839 0.021256
0.696240 0.021971
0.683641 0.022674
0.671048 0.023367
0.658455 0.024048
0.645865 0.024721
0.633280 0.025378
0.620699 0.026029
0.608123 0.026670
0.595552 0.027299
0.582988 0.027919
0.570436 0.028523
0.557889 0.029115
0.545349 0.029697
0.532818 0.030265
0.520296 0.030820
0.507781 0.031365
0.495276 0.031894
0.482780 0.032414
0.470292 0.032920
0.457812 0.033415
0.445340 0.033898
0.432874 0.034369
0.420416 0.034829
0.407964 0.035275
0.395519 0.035708
0.383083 0.036126
0.370651 0.036530
0.358228 0.036916
0.345814 0.037284
0.333403 0.037629
0.320995 0.037950
0.308592 0.038244
0.296191 0.038506
0.283793 0.038733
0.271398 0.038920
0.259004 0.039061
0.246612 0.039153
0.234221 0.039188
0.221833 0.039162
0.209446 0.039064
0.197067 0.038889
0.184693 0.038628
0.172330 0.038271
0.159986 0.037809
0.147685 0.037231
0.135454 0.036526
0.123360 0.035684
0.111394 0.034690
0.099596 0.033528
0.088011 0.032181
0.076685 0.030635
0.065663 0.028864
0.055015 0.026849
0.044865 0.024579
0.035426 0.022076
0.027030 0.019427
0.019970 0.016771
0.014377 0.014268
0.010159 0.012029
0.007009 0.010051
0.004650 0.008292
0.002879 0.006696
0.001578 0.005207
0.000698 0.003785
0.000198 0.002434
0.000000 0.001190
0.000000 0.000000
0.000258 -0.001992
0.000832 -0.003348
0.001858 -0.004711
0.003426 -0.005982
0.005568 -0.007173
0.008409 -0.008303
0.012185 -0.009379
0.017243 -0.010404
0.023929 -0.011326
0.032338 -0.012056
0.042155 -0.012532
0.052898 -0.012742
0.064198 -0.012720
0.075846 -0.012533
0.087736 -0.012223
0.099803 -0.011837
0.111997 -0.011398
0.124285 -0.010925
0.136634 -0.010429
0.149040 -0.009918
0.161493 -0.009400
0.173985 -0.008878
0.186517 -0.008359
0.199087 -0.007845
0.211686 -0.007340
0.224315 -0.006846
0.236968 -0.006364
0.249641 -0.005898
0.262329 -0.005451
0.275030 -0.005022
0.287738 -0.004615
0.300450 -0.004231
0.313158 -0.003870
0.325864 -0.003534
0.338565 -0.003224
0.351261 -0.002939
0.363955 -0.002680
0.376646 -0.002447
0.389333 -0.002239
0.402018 -0.002057
0.414702 -0.001899
0.427381 -0.001766
0.440057 -0.001656
0.452730 -0.001566
0.465409 -0.001496
0.478092 -0.001443
0.490780 -0.001407
0.503470 -0.001381
0.516157 -0.001369
0.528844 -0.001364
0.541527 -0.001368
0.554213 -0.001376
0.566894 -0.001386
0.579575 -0.001398
0.592254 -0.001410
0.604934 -0.001424
0.617614 -0.001434
0.630291 -0.001437
0.642967 -0.001443
0.655644 -0.001442
0.668323 -0.001439
0.681003 -0.001437
0.693683 -0.001440
0.706365 -0.001442
0.719048 -0.001444
0.731731 -0.001446
0.744416 -0.001443
0.757102 -0.001445
0.769790 -0.001444
0.782480 -0.001445
0.795173 -0.001446
0.807870 -0.001446
0.820569 -0.001446
0.833273 -0.001446
0.845984 -0.001448
0.858698 -0.001448
0.871422 -0.001451
0.884148 -0.001448
0.896868 -0.001446
0.909585 -0.001443
0.922302 -0.001445
0.935019 -0.001446
0.947730 -0.001446
0.960405 -0.001439
0.972917 -0.001437
0.984788 -0.001441
0.994843 -0.001441
1.000019 -0.001441
First column is X and the second column is Y. Notice how the last values of Y are repeated.
Maybe someone can provide me with a piece of code to do this? Or any suggestions are welcome as well.
Remember I need to automate this process.
Thanks for your time and effort I really appreciate it!
There is quick and dirty method if you do not know the exact function defining the foil profile. Split your data into 2 sets, top and bottom planes, so the 'x' data are monotonic increasing.
First I imported your data table in the variable A, then:
%// just reorganise your input in individual vectors. (this is optional but
%// if you do not do it you'll have to adjust the code below)
x = A(:,1) ;
y = A(:,2) ;
ipos = y > 0 ; %// indices of the top plane
ineg = y <= 0 ; %// indices of the bottom plane
xi = linspace(0,1,500) ; %// new Xi for interpolation
ypos = interp1( x(ipos) , y(ipos) , xi ) ; %// re-interp the top plane
yneg = interp1( x(ineg) , y(ineg) , xi ) ; %// re-interp the bottom plane
y_new = [fliplr(yneg) ypos] ; %// stiches the two half data set together
x_new = [fliplr(xi) xi] ;
%% // display
figure
plot(x,y,'o')
hold on
plot(x_new,y_new,'.r')
axis equal
As said on top, it is quick and dirty. As you can see from the detail figure, you can greatly improve the x resolution this way in the area where the profile is close to the horizontal direction, but you loose a bit of resolution at the noose of the foil where the profile is close to the vertical direction.
If it's acceptable then you're all set. If you really need the resolution at the nose, you could look at interpolating on x as above but do a very fine x grid near the noose (instead of the regular x grid I provided as example).
if your replace the xi definition above by:
xi = [linspace(0,0.01,50) linspace(0.01,1,500)] ;
You get the following near the nose:
adjust that to your needs.
To interpolate any function, there must be a function defined. When you define y=f(x), you cannot have the same x for two different values of y because then we are not talking about a function. In your example data, neither x nor y are monotonic, so anyway you slice it, you'll have two (or more) "y"s for the same "x". If you wish to interpolate, you need to divide this into two separate problems, top/bottom and define proper functions for interp1/2/n to work with, for example, slice it horizontally where x==0. In any case, you would have to provide additional info than just x or y alone, e.g.: x=0.5 and y is on top.
On the other hand, if all you want to do is to insert a few values between each x and y in your array, you can do this using finite differences:
%// transform your original xy into 3d array where x is in first slice and y in second
xy = permute(xy(85:95,:), [3,1,2]); %// 85:95 is near x=0 in your data
%// lets say you want to insert three additional points along each line between every two points on given airfoil
h = [0, 0.25, 0.5, 0.75].'; %// steps along each line - column vector
%// every interpolated h along the way between f(x(n)) and f(x(n+1)) can
%// be defined as: f(x(n) + h) = f(x(n)) + h*( f(x(n+1)) - f(x(n)) )
%// this is first order finite differences approximation in 1D. 2D is very
%// similar only with gradient (this should be common knowledge, look it up)
%// from here it's just fancy matrix play
%// 2D gradient of xy curve
gradxy = diff(xy, 1, 2); %// diff xy, first order, along the 2nd dimension, where x and y now run
h_times_gradxy = bsxfun(#times, h, gradxy); %// gradient times step size
xy_in_3d_array = bsxfun(#plus, xy(:,1:end-1,:), h_times_gradxy); %// addition of "f(x)" and there we have it, the new x and y for every step h
[x,y] = deal(xy_in_3d_array(:,:,1), xy_in_3d_array(:,:,2)); %// extract x and y from 3d matrix
xy_interp = [x(:), y(:)]; %// use Matlab's linear indexing to flatten x and y into columns
%// plot to check results
figure; ax = newplot; hold on;
plot(ax, xy(:,:,1), xy(:,:,2),'o-');
plot(ax, xy_interp(:,1), xy_interp(:,2),'+')
legend('Original','Interpolated',0);
axis tight;
grid;
%// The End
And these are the results, near x=0 for clarity of presentation:
Hope that helps.
Cheers.

Random sample of points from a rectangular box with a spherical obstacle

The workspace is given as:
limits=[-1 4; -1 4; -1 4];
And in this workspace, there is a spherical obstacle which is defined as:
obstacle.origin_x=1.6;
obstacle.origin_y=0.8;
obstacle.origin_z=0.2;
obstacle.radius_obs=0.2;
save('obstacle.mat', 'obstacle');
I would like to create random point in the area of lim. I created random points using the code below:
function a=rndmpnt(lim, numofpoints)
x=lim(1,1)+(lim(1,2)-lim(1,1))*rand(1,numofpoint);
y=lim(2,1)+(lim(2,2)-lim(2,1))*rand(1,numofpoint);
z=lim(3,1)+(lim(3,2)-lim(3,1))*rand(1,numofpoint);
a=[x y z];
Now I would like to eliminate the points in the area of limits-obstacle. how can I do that?
You want to reject the points within the obstacle. Naturally, after rejection you will probably end up with fewer points than numofpoint. So the process will need to be repeated until enough points are generated. A while loop is appropriate here.
Rejection is done by finding ix (indices of acceptable points) and appending only those points to matrix a. The loop repeats until there are enough of those, and returns exactly the number requested.
function a = rndmpnt(lim, numofpoints)
a = zeros(3,0); % begin with empty matrix
while size(a,2) < numofpoint % not enough points yet
x=lim(1,1)+(lim(1,2)-lim(1,1))*rand(1,numofpoint);
y=lim(2,1)+(lim(2,2)-lim(2,1))*rand(1,numofpoint);
z=lim(3,1)+(lim(3,2)-lim(3,1))*rand(1,numofpoint);
ix = (x - obstacle.origin_x).^2 + (y - obstacle.origin_y).^2 + (z - obstacle.origin_z).^2 > obstacle.radius_obs^2;
a = [a, [x(ix); y(ix); z(ix)]];
end
a = a(:, 1:numofpoint);
end
You may want to add a safeguard against infinite loop (some limit on the number of cycles) in case the user passes in the values such that there are no acceptable points.

matlab - optimize getting the angle between each vector with all others in a large array

I am trying to get the angle between every vector in a large array (1896378x4 -EDIT: this means I need 1.7981e+12 angles... TOO LARGE, but if there's room to optimize the code, let me know anyways). It's too slow - I haven't seen it finish yet. Here's the steps towards optimizing I've taken:
First, logically what I (think I) want (just use Bt=rand(N,4) for testing):
[ro,col]=size(Bt);
angbtwn = zeros(ro-1); %too long to compute!! total non-zero = ro*(ro-1)/2
count=1;
for ii=1:ro-1
for jj=ii+1:ro
angbtwn(count) = atan2(norm(cross(Bt(ii,1:3),Bt(jj,1:3))), dot(Bt(ii,1:3),Bt(jj,1:3))).*180/pi;
count=count+1;
end
end
So, I though I'd try and vectorize it, and get rid of the non-built-in functions:
[ro,col]=size(Bt);
% angbtwn = zeros(ro-1); %TOO LONG!
for ii=1:ro-1
allAxes=Bt(ii:ro,1:3);
repeachAxis = allAxes(ones(ro-ii+1,1),1:3);
c = [repeachAxis(:,2).*allAxes(:,3)-repeachAxis(:,3).*allAxes(:,2)
repeachAxis(:,3).*allAxes(:,1)-repeachAxis(:,1).*allAxes(:,3)
repeachAxis(:,1).*allAxes(:,2)-repeachAxis(:,2).*allAxes(:,1)];
crossedAxis = reshape(c,size(repeachAxis));
normedAxis = sqrt(sum(crossedAxis.^2,2));
dottedAxis = sum(repeachAxis.*allAxes,2);
angbtwn(1:ro-ii+1,ii) = atan2(normedAxis,dottedAxis)*180/pi;
end
angbtwn(1,:)=[]; %angle btwn vec and itself
%only upper left triangle are values...
Still too long, even to pre-allocate... So I try to do sparse, but not implemented right:
[ro,col]=size(Bt);
%spalloc:
angbtwn = sparse([],[],[],ro,ro,ro*(ro-1)/2);%zeros(ro-1); %cell(ro,1)
for ii=1:ro-1
...same
angbtwn(1:ro-ii+1,ii) = atan2(normedAxis,dottedAxis)*180/pi; %WARNED: indexing = >overhead
% WHAT? Can't index sparse?? what's the point of spalloc then?
end
So if my logic can be improved, or if sparse is really the way to go, and I just can't implement it right, let me know where to improve. THANKS for your help.
Are you trying to get the angle between every pair of vectors in Bt? If Bt has 2 million vectors that's a trillion pairs each (apparently) requiring an inner product to get the angle between. I don't know that any kind of optimization is going to help have this operation finish in a reasonable amount of time in MATLAB on a single machine.
In any case, you can turn this problem into a matrix multiplication between matrices of unit vectors:
N=1000;
Bt=rand(N,4); % for testing. A matrix of N (row) vectors of length 4.
[ro,col]=size(Bt);
magnitude = zeros(N,1); % the magnitude of each row vector.
units = zeros(size(Bt)); % the unit vectors
% Compute the unit vectors for the row vectors
for ii=1:ro
magnitude(ii) = norm(Bt(ii,:));
units(ii,:) = Bt(ii,:) / magnitude(ii);
end
angbtwn = acos(units * units') * 360 / (2*pi);
But you'll run out of memory during the matrix multiplication for largish N.
You might want to use pdist with 'cosine' distance to compute the 1-cos(angbtwn).
Another perk for this approach that it does not compute n^2 values but exaxtly .5*(n-1)*n unique values :)