we are working on a project to come up with an intermediate representation for the code in terms of something called an assignment decision diagram. So it would be very helpful if someone can tell us how you guys are compiling the code and how to access the graphs generated during compilation i.e after parsing the code for grammar.
Even help regarding accessing the code after parsing of the compiler is fine. Any help regarding how to go about doing it is also appreciated.
Currently, there is not a well defined intermediate representation of Chisel as it goes between the user source code and the specified C++ or Verilog backends.
However, I believe this is a current project amongst the Chisel devs to break apart the backend and allow access to the IR (and allow for user-defined compiler passes).
In the meantime, check out Backend.scala (particularly the elaborate() method). That's where a lot of the magic originates. I believe it is possible to jump into the Scala command line in the middle of elaboration, which will give you access to the hardware tree representation, but I'm not sure how meaningful or useful that will be for you.
Related
Is there a reason the Eclipse content assits doesn't work in/around lambdas? In a normal case Eclipse usually does this after writing a dot:
Which works just fine like anywhere else. However just a couple of lines later I get nothing:
Both objects are of the same type. Unfortunately I use these all the time as they make everything much faster and I don't understand why it works in one lambda and not the other.
Attempting an explanation (you asked for a reason): parsing lambda expressions in Java is a technical challenge, as the Java grammar was not made for parser generators. Code completion, OTOH, inevitably depends on parsing incomplete code, i.e., heuristics must be used to continue parsing after a syntax error. These two just don't nicely cooperate. As a result in some situations your incomplete code will look like garbage to the compiler and hence content assist is not able to figure out, what would be meaningful proposals.
The applied heuristics are constantly being improved. I recommend trying your examples on a recent milestone build. If the problem still exists, you might help the team by filing a bug providing a code example, and describing your expectations and what actual behavior you observe.
I am using TreeHugger to generate code at runtime. I could not find many documents related to it. My question is, if I generate classes using treehugger, will I be able to access those classes in future?
To be precise: I want to read data coming from files like CSV and create classes at runtime . Can I use that class in future, say in the next class generated at runtime.
I am really new to scala, please forgive if I am not clear in explaining.
Thanks a lot!
I've done something similar, so I'll share what I've learned:
Treehugger ultimately generates code (strings) at runtime to be used in a subsequent, separate run (or I suppose to be eval'd at runtime, but I never got that to work).
So the course of action depends on what you mean by "runtime":
Are your .csv files only available at runtime? If you have access to the files at compile time (as is often the case), then are examples of your two options: experimental (scala macros) or traditional (sbt plugin) -- both approaches are similar but have subtle pros and cons.
If you only have access to the files at runtime, but still need to generate and "type" the classes and make the compiler expect them, then it seems to me that somebody has made a bad design mistake! But if you find yourself stuck in this circumstance, then it is possible to define and load classes at runtime with a bytecode-engineering library and some type-checker black magic (runtime type provider).
A friend of mine needs to implement some statistical calculations in hardware.
She wants it to be accomplished using VHDL.
(cross my heart, I haven't written a line of code in VHDL and know nothing about its subtleties)
In particular, she needs a direct analogue of MATLAB's betainc function.
Is there a good package around for doing this?
Any hints on the implementation are also highly appreciated.
If it's not a good idea at all, please tell me about it as well.
Thanks a lot!
There isn't a core available that performs an incomplete beta function in the Xilinx toolset. I can't speak for the other toolsets available, although I would doubt that there is such a thing.
What Xilinx does offer is a set of signal processing blocks, like multipliers, adders and RAM Blocks (amongst other things, filters, FFTs), that can be used together to implement various custom signal transforms.
In order for this to be done, there needs to be a complete understanding of the inner workings of the transform to be applied.
A good first step is to implement the function "manually" in matlab as a proof of concept:
Instead of using the built-in function in matlab, your friend can try to implement the function just using fundamental operators like multipliers and adders.
The results can be compared with those produced by the built-in function for verification.
The concept can then be moved to VHDL using the building blocks that are provided.
Doing this for the incomplete beta function isn't something for the faint-hearted, but it can be done.
As far as I know there is no tool which allow interface of VHDL and matlab.
But interface of VHDL and C is fairly easy, so if you can implement your code(MATLAB's betainc function) in C then it can be done easily with FLI(foreign language interface).
If you are using modelsim below link can be helpful.
link
First of all a word of warning, if you haven't done any VHDL/FPGA work before, this is probably not the best place to start. With VHDL (and other HDL languages) you are basically describing hardware, rather than a sequential line of commands to execute on a processor (as you are with C/C++, etc.). You thus need a completely different skill- and mind-set when doing FPGA-development. Just because something can be written in VHDL, it doesn't mean that it actually can work in an FPGA chip (that it is synthesizable).
With that said, Xilinx (one of the major manufacturers of FPGA chips and development tools) does provide the System Generator package, which interfaces with Matlab and can automatically generate code for FPGA chips from this. I haven't used it myself, so I'm not at all sure if it's usable in your friend's case - but it's probably a good place to start.
The System Generator User guide (link is on the previously linked page) also provides a short introduction to FPGA chips in general, and in the context of using it with Matlab.
You COULD write it yourself. However, the incomplete beta function is an integral. For many values of the parameters (as long as both are greater than 1) it is fairly well behaved. However, when either parameter is less than 1, a singularity arises at an endpoint, making the problem a bit nasty. The point is, don't write it yourself unless you have a solid background in numerical analysis.
Anyway, there are surely many versions in C available. Netlib must have something, or look in Numerical Recipes. Or compile it from MATLAB. Then link it in as nav_jan suggests.
As an alternative to VHDL, you could use MyHDL to write and test your beta function - that can produce synthesisable (ie. can go into an FPGA chip) VHDL (or Verilog as you wish) out of the back end.
MyHDL is an extra set of modules on top of Python which allow hardware to be modelled, verified and generated. Python will be a much more familiar environment to write validation code in than VHDL (which is missing many of the abstract data types you might take for granted in a programming language).
The code under test will still have to be written with a "hardware mindset", but that is usually a smaller piece of code than the test environment, so in some ways less hassle than figuring out how to work around the verification limitations of VHDL.
I'm doing a research project on random forest algorithm. I have found numerous implementations of the algorithm but the main part of the code is often written in Fortran while I'm completely naive in it.
I have to edit the code, change the main parameters (like tree depth, num of feature variables, ...) and trace the algorithm's performance during each run.
Currently I'm using "Windows-Precompiled-RF_MexStandalone-v0.02-". The train and predict functions are matlab mex files and can not be opened or edited. Can anyone give me a piece of advice on what to do or is there a valid and completely matlab-based version of random forests.
I've read the randomforest-matlab carefully. The main training part unfortunately is a dll file. Through reading more, most of my wonders is now resolved. My question mainly was how to run several trees simultaneously.
Have you taken a look at these libraries?
Stochastic Bosque
randomforest-matlab
If you're doing a research project on it, the best thing is probably to implement the individual tree training yourself in C and then write Mex wrappers. I'd start with an ID3 tree (before attempting C4.5 for instance.) Then write the random forest code itself, which, once you write the tree code, isn't all that hard.
You'll:
learn a lot
be able to modify them as much as you like
eventually move on to exploring new areas with them
I've implemented them myself from scratch so I can help once you post some of your own code. But I don't think anybody on this site will write the code for you.
Will it take effort? Yes. Will you come out of it with more knowledge and ability than you had going in? Undoubtably.
There is a nice library in R called randomForest. It is based on the original implementation of Breiman in Fortran but it is now mainly recoded in C.
http://cran.r-project.org/web/packages/randomForest/index.html
The main parameters you talk about (tree depth, number of features to be tested, ...) are directly available.
Another library I would recommend is Weka. It is java based and lucid.Performance is slightly off though compared to R. The source code can be downloaded from http://www.cs.waikato.ac.nz/ml/weka/
I have taken over a large code base and would like to get an overview how and where certain classes and their methods are used.
Is there any good tool that can somehow visualize the dependencies and draw a nice call tree or something similar?
The code is in C++ in Visual Studio if that helps narrow down any selection.
Here are a few options:
CodeDrawer
CC-RIDER
Doxygen
The last one, doxygen, is more of an automatic documentation tool, but it is capable of generating dependency graphs and inheritance diagrams. It's also licensed under the GPL, unlike the first two which are not free.
When I have used Doxygen it has produced a full list of callers and callees. I think you have to turn it on.
David, thanks for the suggestions. I spent the weekend trialing the programs.
Doxygen seems to be the most comprehensive of the 3, but it still leaves some things to be desired in regard to callers of methods.
All 3 seem to have problems with C++ templates to varying degrees. CC-Rider simply crashed in the middle of the analysis and CodeDrawer does not show many of the relationships. Doxygen worked pretty well, but it too did not find and show all relations and instead overwhelmed me with lots of macro references until I filtered them out.
So, maybe I should clarify "large codebase" a bit for eventual other suggestions: >100k lines of code overall spread out over more than 100 template files plus several actual class files pulling it all together.
Any other tools out there, that might be up to the task and could do better (more thoroughly)? Oh and specifically: anything that understands IDL and COM interfaces?
When I have used Doxygen it has produced a full list of callers and callees. I think you have to turn it on.
I did that of course, but like I mentioned, doxygen does not consider interfaces between objects as they are defined in the IDL. It "only" shows direct C++ calls.
Don't get me wrong, it is already amazing what it does, but it is still not complete from my high level view trying to get a good understanding of how everything fits together.
In Java I would start with JDepend. In .NET, with NDepend. Don't know about C++.