How to vary the array elements of this matrix - matlab

Ok, i've the following FOR structure:
Ny = 246;
Nx = 190;
for n1y = 1:Ny
for n1x = 1:Nx
for n2y = 1:Ny
for n2x = 1:Nx
n1 =
n2 =
dx12 = xax(n1x) - xax(n2x);
dy12 = xay(n1y) - xay(n2y);
r12 = sqrt(dx12^2+dy12^2);
B(n1,n2) = 0.8 * exp((-1/2)*(r12/300));
end
end
end
end
Where, xax is a vector of length 190 and xay is a vector of length 246.
My doubt is, how can i determine n1 and n2 in the way that B becomes a (Nx*Ny , Nx*Ny) matrix?
Ps.: sorry for the language errors, my native language is not English.
Thanks.

Probably something like
n1 = (n1x - 1) * Ny + n1y;
n2 = (n2x - 1) * Ny + n2y;
or the same with all the x and y parts swapped.
But it seems that you are constructing a gigantic matrix B of size (246*190)^2*8 / 1e9 = 17 gigabyte! Is that really what you want?

Related

1D finite element method in the Hermite basis (P3C1) - Problem of solution calculation

I am currently working on solving the problem $-\alpha u'' + \beta u = f$ with Neumann conditions on the edge, with the finite element method in MATLAB.
I managed to set up a code that works for P1 and P2 Lagragne finite elements (i.e: linear and quadratic) and the results are good!
I am trying to implement the finite element method using the Hermite basis. This basis is defined by the following basis functions and derivatives:
syms x
phi(x) = [2*x^3-3*x^2+1,-2*x^3+3*x^2,x^3-2*x^2+x,x^3-x^2]
% Derivative
dphi = [6*x.^2-6*x,-6*x.^2+6*x,3*x^2-4*x+1,3*x^2-2*x]
The problem with the following code is that the solution vector u is not good. I know that there must be a problem in the S and F element matrix calculation loop, but I can't see where even though I've been trying to make changes for a week.
Can you give me your opinion? Hopefully someone can see my error.
Thanks a lot,
% -alpha*u'' + beta*u = f
% u'(a) = bd1, u'(b) = bd2;
a = 0;
b = 1;
f = #(x) (1);
alpha = 1;
beta = 1;
% Neuamnn boundary conditions
bn1 = 1;
bn2 = 0;
syms ue(x)
DE = -alpha*diff(ue,x,2) + beta*ue == f;
du = diff(ue,x);
BC = [du(a)==bn1, du(b)==bn2];
ue = dsolve(DE, BC);
figure
fplot(ue,[a,b], 'r', 'LineWidth',2)
N = 2;
nnod = N*(2+2); % Number of nodes
neq = nnod*1; % Number of equations, one degree of freedom per node
xnod = linspace(a,b,nnod);
nodes = [(1:3:nnod-3)', (2:3:nnod-2)', (3:3:nnod-1)', (4:3:nnod)'];
phi = #(xi)[2*xi.^3-3*xi.^2+1,2*xi.^3+3*xi.^2,xi.^3-2*xi.^2+xi,xi.^3-xi.^2];
dphi = #(xi)[6*xi.^2-6*xi,-6*xi.^2+6*xi,3*xi^2-4*xi+1,3*xi^2-2*xi];
% Here, just calculate the integral using gauss quadrature..
order = 5;
[gp, gw] = gauss(order, 0, 1);
S = zeros(neq,neq);
M = S;
F = zeros(neq,1);
for iel = 1:N
%disp(iel)
inod = nodes(iel,:);
xc = xnod(inod);
h = xc(end)-xc(1);
Se = zeros(4,4);
Me = Se;
fe = zeros(4,1);
for ig = 1:length(gp)
xi = gp(ig);
iw = gw(ig);
Se = Se + dphi(xi)'*dphi(xi)*1/h*1*iw;
Me = Me + phi(xi)'*phi(xi)*h*1*iw;
x = phi(xi)*xc';
fe = fe + phi(xi)' * f(x) * h * 1 * iw;
end
% Assembly
S(inod,inod) = S(inod, inod) + Se;
M(inod,inod) = M(inod, inod) + Me;
F(inod) = F(inod) + fe;
end
S = alpha*S + beta*M;
g = zeros(neq,1);
g(1) = -alpha*bn1;
g(end) = alpha*bn2;
alldofs = 1:neq;
u = zeros(neq,1); %Pre-allocate
F = F + g;
u(alldofs) = S(alldofs,alldofs)\F(alldofs)
Warning: Matrix is singular to working precision.
u = 8×1
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
figure
fplot(ue,[a,b], 'r', 'LineWidth',2)
hold on
plot(xnod, u, 'bo')
for iel = 1:N
inod = nodes(iel,:);
xc = xnod(inod);
U = u(inod);
xi = linspace(0,1,100)';
Ue = phi(xi)*U;
Xe = phi(xi)*xc';
plot(Xe,Ue,'b -')
end
% Gauss function for calculate the integral
function [x, w, A] = gauss(n, a, b)
n = 1:(n - 1);
beta = 1 ./ sqrt(4 - 1 ./ (n .* n));
J = diag(beta, 1) + diag(beta, -1);
[V, D] = eig(J);
x = diag(D);
A = b - a;
w = V(1, :) .* V(1, :);
w = w';
x=x';
end
You can find the same post under MATLAB site for syntax highlighting.
Thanks
I tried to read courses, search in different documentation and modify my code without success.

How can I vectorize slow code in MATLAB to increase peformance?

How can I vectorize this code? At the moment it runs so slow. I'm really stuck and I've spent the last couple of hours trying to vectorize it, however I can't seem to get it to work correctly.
My naive program below works incredibly slowly. N should really be 10,000 but the program is struggling with N = 100. Any advice would be appreciated.
The code wants to iterate through the functions given N times for each value w21. It then plots the last 200 values for each value of w21. The code below does work as expected in terms of the plot but as mentioned is far to slow since for a good plot the values need to be in the thousands.
hold on
% Number of iterations
N = 100;
x = 1;
y = 1;
z = 1;
for w21 = linspace(-12,-3,N)
for i = 1:N-1
y = y_iterate(x,z,w21);
z = z_iterate(y);
x = x_iterate(y);
if i >= (N - 200)
p = plot(w21,x,'.k','MarkerSize',3);
end
end
end
Required functions:
function val = x_iterate(y)
val = -3 + 8.*(1 ./ (1 + exp(-y)));
end
function val = z_iterate(y)
val = -7 + 8.*(1 ./ (1 + exp(-y)));
end
function val = y_iterate(x,z,w21)
val = 4 + w21.*(1 ./ (1 + exp(-x))) + 6.*(1 ./ (1 + exp(-z)));
end
I believe it's because of plot. Try:
[X,Y,Z] = deal( zeros(N,N-1) );
w21 = linspace(-12,-3,N);
for i = 1:N
for j = 1:N-1
y = y_iterate(x,z,w21(i));
z = z_iterate(y);
x = x_iterate(y);
X(i,j) = x;
Y(i,j) = y;
Z(i,j) = z;
end
end
nn = max(1,N-200);
plot(w21,X(nn:end,:),'.k')

find optimum values of model iteratively

Given that I have a model that can be expressed as:
y = a + b*st + c*d2
where st is a smoothed version of some data, and a, b and c are model coffieicients that are unknown. An iterative process should be used to find the best values for a, b, and c and also an additional value alpha, shown below.
Here, I show an example using some data that I have. I'll only show a small fraction of the data here to get an idea of what I have:
17.1003710350253 16.7250000000000 681.521316544969
17.0325989276234 18.0540000000000 676.656460644882
17.0113862864815 16.2460000000000 671.738125420192
16.8744356336601 15.1580000000000 666.767363772145
16.5537077980594 12.8830000000000 661.739644621949
16.0646524243248 10.4710000000000 656.656219934146
15.5904357723302 9.35000000000000 651.523986525985
15.2894427136087 12.4580000000000 646.344231349275
15.1181450512182 9.68700000000000 641.118300709434
15.0074128442766 10.4080000000000 635.847600747838
14.9330905954828 11.5330000000000 630.533597865332
14.8201069920058 10.6830000000000 625.177819082427
16.3126863409751 15.9610000000000 619.781852331734
16.2700386755872 16.3580000000000 614.347346678083
15.8072873786912 10.8300000000000 608.876012461843
15.3788908036751 7.55000000000000 603.369621360944
15.0694302370038 13.1960000000000 597.830006367160
14.6313314652840 8.36200000000000 592.259061672302
14.2479738025295 9.03000000000000 586.658742460043
13.8147156115234 5.29100000000000 581.031064599264
13.5384821473624 7.22100000000000 575.378104234926
13.3603543306796 8.22900000000000 569.701997272687
13.2469020140965 9.07300000000000 564.004938753678
13.2064193251406 12.0920000000000 558.289182116093
13.1513460035983 12.2040000000000 552.557038340513
12.8747853506079 4.46200000000000 546.810874976187
12.5948999131388 4.61200000000000 541.053115045791
12.3969691298003 6.83300000000000 535.286235826545
12.1145822760120 2.43800000000000 529.512767505944
11.9541188991626 2.46700000000000 523.735291710730
11.7457790927936 4.15000000000000 517.956439908176
11.5202981254529 4.47000000000000 512.178891679167
11.2824263926694 2.62100000000000 506.405372863054
11.0981930749608 2.50000000000000 500.638653574697
10.8686514170776 1.66300000000000 494.881546094641
10.7122053911554 1.68800000000000 489.136902633882
10.6255883267131 2.48800000000000 483.407612975178
10.4979083986908 4.65800000000000 477.696601993434
10.3598092538338 4.81700000000000 472.006827058220
10.1929490084608 2.46700000000000 466.341275322034
10.1367069580204 2.36700000000000 460.702960898512
10.0194072271384 4.87800000000000 455.094921935306
9.88627023967911 3.53700000000000 449.520217586971
9.69091601129389 0.417000000000000 443.981924893704
9.48684595125235 -0.567000000000000 438.483135572389
9.30742664359900 0.892000000000000 433.026952726910
9.18283037670750 1.50000000000000 427.616487485241
9.02385722622626 1.75800000000000 422.254855571341
8.90355705229410 2.46700000000000 416.945173820367
8.76138912769045 1.99200000000000 411.690556646207
8.61299614111510 0.463000000000000 406.494112470755
8.56293606861698 6.55000000000000 401.358940124780
8.47831879772002 4.65000000000000 396.288125230599
8.42736865902327 6.45000000000000 391.284736577104
8.26325535934842 -1.37900000000000 386.351822497948
8.14547793724500 1.37900000000000 381.492407263967
8.00075641792910 -1.03700000000000 376.709487501030
7.83932517791044 -1.66700000000000 372.006028644665
7.68389447250257 -4.12900000000000 367.384961442799
7.63402151555169 -2.57900000000000 362.849178517935
The results that follow probably won't be meaningful as the full data would be needed (but this is an example). Using this data I have tried to solve iteratively by
y = d(:,1);
d1 = d(:,2);
d2 = d(:,3);
alpha_o = linspace(0.01,1,10);
a = linspace(0.01,1,10);
b = linspace(0.01,1,10);
c = linspace(0.01,1,10);
defining different values for a, b, and c as well as another term alpha, which is used in the model, and am now going to find every possible combination of these parameters and see which combination provides the best fit to the data:
% every possible combination of values
xx = combvec(alpha_o,a,b,c);
% loop through each possible combination of values
for j = 1:size(xx,2);
alpha_o = xx(1,j);
a_o = xx(2,j);
b_o = xx(3,j);
c_o = xx(4,j);
st = d1(1);
for i = 2:length(d1);
st(i) = alpha_o.*d1(i) + (1-alpha_o).*st(i-1);
end
st = st(:);
y_pred = a_o + (b_o*st) + (c_o*d2);
mae(j) = nanmean(abs(y - y_pred));
end
I can then re-run the model using these optimum values:
[id1,id2] = min(mae);
alpha_opt = xx(:,id2);
st = d1(1);
for i = 2:length(d1);
st(i) = alpha_opt(1).*d1(i) + (1-alpha_opt(1)).*st(i-1);
end
st = st(:);
y_pred = alpha_opt(2) + (alpha_opt(3)*st) + (alpha_opt(4)*d2);
mae_final = nanmean(abs(y - y_pred));
However, to reach a final answer I would need to increase the number of initial guesses to more than 10 for each variable. This will take a long time to run. Thereofre, I am wondering if there is a better method for what I am trying to do here? Any advice is appreciated.
Here's some thoughts: If you could decrease the amount of computation within each for loop, you could possibly speed it up. One possible way is to look for common factors between each loop and move it outside for loop:
If you look at the iteration, you'll see
st(1) = d1(1)
st(2) = a * d1(2) + (1-a) * st(1) = a *d1(2) + (1-a)*d1(1)
st(3) = a * d1(3) + (1-a) * st(2) = a * d1(3) + a *(1-a)*d1(2) +(1-a)^2 * d1(1)
st(n) = a * d1(n) + a *(1-a)*d1(n-1) + a *(1-a)^2 * d1(n-2) + ... +(1-a)^(n-1)*d1(1)
Which means st can be calculated by multiplying these two matrices (here I use n=4 for example to illustrate the concept) and sum along the first dimension:
temp1 = [ 0 0 0 a ;
0 0 a a(1-a) ;
0 a a(1-a) a(1-a)^2 ;
1 (1-a) (1-a)^2 (1-a)^3 ;]
temp2 = [ 0 0 0 d1(4) ;
0 0 d1(3) d1(3) ;
0 d1(2) d1(2) d1(2) ;
d1(1) d1(1) d1(1) d1(1) ;]
st = sum(temp1.*temp2,1)
Here's codes that utilize this concept: Computation has been moved out of the inner for loop and only assignment is left.
alpha_o = linspace(0.01,1,10);
xx = nchoosek(alpha_o, 4);
n = size(d1,1);
matrix_d1 = zeros(n, n);
d2 = d2'; % To make the dimension of d2 and st the same.
for ii = 1:n
matrix_d1(n-ii+1:n, ii) = d1(1:ii);
end
st = zeros(size(d1)'); % Pre-allocation of matrix will improve speed.
mae = zeros(1,size(xx,1));
matrix_alpha = zeros(n, n);
for j = 1 : size(xx,1)
alpha_o = xx(j,1);
temp = (power(1-alpha_o, [0:n-1])*alpha_o)';
matrix_alpha(n,:) = power(1-alpha_o, [0:n-1]);
for ii = 2:n
matrix_alpha(n-ii+1:n-1, ii) = temp(1:ii-1);
end
st = sum(matrix_d1.*matrix_alpha, 1);
y_pred = xx(j,2) + xx(j,3)*st + xx(j,4)*d2;
mae(j) = nanmean(abs(y - y_pred));
end
Then :
idx = find(min(mae));
alpha_opt = xx(idx,:);
st = zeros(size(d1)');
temp = (power(1-alpha_opt(1), [0:n-1])*alpha_opt(1))';
matrix_alpha = zeros(n, n);
matrix_alpha(n,:) = power(1-alpha_opt(1), [0:n-1]);;
for ii = 2:n
matrix_alpha(n-ii+1:n-1, ii) = temp(1:ii-1);
end
st = sum(matrix_d1.*matrix_alpha, 1);
y_pred = alpha_opt(2) + (alpha_opt(3)*st) + (alpha_opt(4)*d2);
mae_final = nanmean(abs(y - y_pred));
Let me know if this helps !

Difference between MATLAB hough and my implementation

I am trying to recreate MATLAB's hough function with mine. My code follows
function [H,T,R] = my_hough(x,dr,dtheta)
rows = size(x,1);
cols = size(x,2);
D = sqrt((rows - 1)^2 + (cols - 1)^2);
Nr = 2*(ceil(D/dr)) + 1;
diagonal = dr*ceil(D/dr);
R = -diagonal:dr:diagonal;
T = -90:dtheta:90-dtheta;
Ntheta = length(T);
H = zeros(Nr,Ntheta);
for i = 1:Ntheta
for n1 = 1:rows
for n2 = 1:cols
if x(n1,n2)==1
r = n2*cos(T(i)*pi/180) + n1*sin(T(i)*pi/180);
[~,j] = min(abs(R-ones(1,Nr)*r));
H(j,i) = H(j,i) + 1;
end
end
end
end
end
where dr and dtheta are distance and angle resolution. Printing the difference between my Hough table and MATLAB's there are many zeros, but there are also some non-zero elements. Any idea why this is happening?
Well, actually it was a very silly mistake...
r = n2*cos(T(i)*pi/180) + n1*sin(T(i)*pi/180);
must be
r = (n2-1)*cos(T(i)*pi/180) + (n1-1)*sin(T(i)*pi/180);
Thanks to this weird MATLAB indexing.

Application of Neural Network in MATLAB

I asked a question a few days before but I guess it was a little too complicated and I don't expect to get any answer.
My problem is that I need to use ANN for classification. I've read that much better cost function (or loss function as some books specify) is the cross-entropy, that is J(w) = -1/m * sum_i( yi*ln(hw(xi)) + (1-yi)*ln(1 - hw(xi)) ); i indicates the no. data from training matrix X. I tried to apply it in MATLAB but I find it really difficult. There are couple things I don't know:
should I sum each outputs given all training data (i = 1, ... N, where N is number of inputs for training)
is the gradient calculated correctly
is the numerical gradient (gradAapprox) calculated correctly.
I have following MATLAB codes. I realise I may ask for trivial thing but anyway I hope someone can give me some clues how to find the problem. I suspect the problem is to calculate gradients.
Many thanks.
Main script:
close all
clear all
L = #(x) (1 + exp(-x)).^(-1);
NN = #(x,theta) theta{2}*[ones(1,size(x,1));L(theta{1}*[ones(size(x,1),1) x]')];
% theta = [10 -30 -30];
x = [0 0; 0 1; 1 0; 1 1];
y = [0.9 0.1 0.1 0.1]';
theta0 = 2*rand(9,1)-1;
options = optimset('gradObj','on','Display','iter');
thetaVec = fminunc(#costFunction,theta0,options,x,y);
theta = cell(2,1);
theta{1} = reshape(thetaVec(1:6),[2 3]);
theta{2} = reshape(thetaVec(7:9),[1 3]);
NN(x,theta)'
Cost function:
function [jVal,gradVal,gradApprox] = costFunction(thetaVec,x,y)
persistent index;
% 1 x x
% 1 x x
% 1 x x
% x = 1 x x
% 1 x x
% 1 x x
% 1 x x
m = size(x,1);
if isempty(index) || index > size(x,1)
index = 1;
end
L = #(x) (1 + exp(-x)).^(-1);
NN = #(x,theta) theta{2}*[ones(1,size(x,1));L(theta{1}*[ones(size(x,1),1) x]')];
theta = cell(2,1);
theta{1} = reshape(thetaVec(1:6),[2 3]);
theta{2} = reshape(thetaVec(7:9),[1 3]);
Dew = cell(2,1);
DewApprox = cell(2,1);
% Forward propagation
a0 = x(index,:)';
z1 = theta{1}*[1;a0];
a1 = L(z1);
z2 = theta{2}*[1;a1];
a2 = L(z2);
% Back propagation
d2 = 1/m*(a2 - y(index))*L(z2)*(1-L(z2));
Dew{2} = [1;a1]*d2;
d1 = [1;a1].*(1 - [1;a1]).*theta{2}'*d2;
Dew{1} = [1;a0]*d1(2:end)';
% NNRes = NN(x,theta)';
% jVal = -1/m*sum(NNRes-y)*NNRes*(1-NNRes);
jVal = -1/m*(a2 - y(index))*a2*(1-a2);
gradVal = [Dew{1}(:);Dew{2}(:)];
gradApprox = CalcGradApprox(0.0001);
index = index + 1;
function output = CalcGradApprox(epsilon)
output = zeros(size(gradVal));
for n=1:length(thetaVec)
thetaVecMin = thetaVec;
thetaVecMax = thetaVec;
thetaVecMin(n) = thetaVec(n) - epsilon;
thetaVecMax(n) = thetaVec(n) + epsilon;
thetaMin = cell(2,1);
thetaMax = cell(2,1);
thetaMin{1} = reshape(thetaVecMin(1:6),[2 3]);
thetaMin{2} = reshape(thetaVecMin(7:9),[1 3]);
thetaMax{1} = reshape(thetaVecMax(1:6),[2 3]);
thetaMax{2} = reshape(thetaVecMax(7:9),[1 3]);
a2min = NN(x(index,:),thetaMin)';
a2max = NN(x(index,:),thetaMax)';
jValMin = -1/m*(a2min-y(index))*a2min*(1-a2min);
jValMax = -1/m*(a2max-y(index))*a2max*(1-a2max);
output(n) = (jValMax - jValMin)/2/epsilon;
end
end
end
EDIT:
Below I present the correct version of my costFunction for those who may be interested.
function [jVal,gradVal,gradApprox] = costFunction(thetaVec,x,y)
m = size(x,1);
L = #(x) (1 + exp(-x)).^(-1);
NN = #(x,theta) L(theta{2}*[ones(1,size(x,1));L(theta{1}*[ones(size(x,1),1) x]')]);
theta = cell(2,1);
theta{1} = reshape(thetaVec(1:6),[2 3]);
theta{2} = reshape(thetaVec(7:9),[1 3]);
Delta = cell(2,1);
Delta{1} = zeros(size(theta{1}));
Delta{2} = zeros(size(theta{2}));
D = cell(2,1);
D{1} = zeros(size(theta{1}));
D{2} = zeros(size(theta{2}));
jVal = 0;
for in = 1:size(x,1)
% Forward propagation
a1 = [1;x(in,:)']; % added bias to a0
z2 = theta{1}*a1;
a2 = [1;L(z2)]; % added bias to a1
z3 = theta{2}*a2;
a3 = L(z3);
% Back propagation
d3 = a3 - y(in);
d2 = theta{2}'*d3.*a2.*(1 - a2);
Delta{2} = Delta{2} + d3*a2';
Delta{1} = Delta{1} + d2(2:end)*a1';
jVal = jVal + sum( y(in)*log(a3) + (1-y(in))*log(1-a3) );
end
D{1} = 1/m*Delta{1};
D{2} = 1/m*Delta{2};
jVal = -1/m*jVal;
gradVal = [D{1}(:);D{2}(:)];
gradApprox = CalcGradApprox(x(in,:),0.0001);
% Nested function to calculate gradApprox
function output = CalcGradApprox(x,epsilon)
output = zeros(size(thetaVec));
for n=1:length(thetaVec)
thetaVecMin = thetaVec;
thetaVecMax = thetaVec;
thetaVecMin(n) = thetaVec(n) - epsilon;
thetaVecMax(n) = thetaVec(n) + epsilon;
thetaMin = cell(2,1);
thetaMax = cell(2,1);
thetaMin{1} = reshape(thetaVecMin(1:6),[2 3]);
thetaMin{2} = reshape(thetaVecMin(7:9),[1 3]);
thetaMax{1} = reshape(thetaVecMax(1:6),[2 3]);
thetaMax{2} = reshape(thetaVecMax(7:9),[1 3]);
a3min = NN(x,thetaMin)';
a3max = NN(x,thetaMax)';
jValMin = 0;
jValMax = 0;
for inn=1:size(x,1)
jValMin = jValMin + sum( y(inn)*log(a3min) + (1-y(inn))*log(1-a3min) );
jValMax = jValMax + sum( y(inn)*log(a3max) + (1-y(inn))*log(1-a3max) );
end
jValMin = 1/m*jValMin;
jValMax = 1/m*jValMax;
output(n) = (jValMax - jValMin)/2/epsilon;
end
end
end
I've only had a quick eyeball over your code. Here are some pointers.
Q1
should I sum each outputs given all training data (i = 1, ... N, where
N is number of inputs for training)
If you are talking in relation to the cost function, it is normal to sum and normalise by the number of training examples in order to provide comparison between.
I can't tell from the code whether you have a vectorised implementation which will change the answer. Note that the sum function will only sum up a single dimension at a time - meaning if you have a (M by N) array, sum will result in a 1 by N array.
The cost function should have a scalar output.
Q2
is the gradient calculated correctly
The gradient is not calculated correctly - specifically the deltas look wrong. Try following Andrew Ng's notes [PDF] they are very good.
Q3
is the numerical gradient (gradAapprox) calculated correctly.
This line looks a bit suspect. Does this make more sense?
output(n) = (jValMax - jValMin)/(2*epsilon);
EDIT: I actually can't make heads or tails of your gradient approximation. You should only use forward propagation and small tweaks in the parameters to compute the gradient. Good luck!