Create Matrix using Matrix Indices - matlab

In matlab, how could you create a matrix M using its indices to populate the values? For example, say I want to create a 3x3 matrix M such that
M(i,j) = i+j --> [ 2 3 4; 3 4 5; 4 5 6]
I tried making vectors: x = 1:3', y = 1:3 and then
M = x(:) + y(:)
but it didn't work as expected.
Any thoughts on how this can be done?
Thanks!
UPDATE
The M I actually desire is:
M(i,j) = -2^(-i - j).

One way would be
x = 1:3;
z = ones(1,3);
N = z'*x + x'*z
M = -2 .^ -(z'*x + x'*z)
% Or simply
% M = -2 .^ -N
Output:
N =
2 3 4
3 4 5
4 5 6
M =
-0.250000 -0.125000 -0.062500
-0.125000 -0.062500 -0.031250
-0.062500 -0.031250 -0.015625

You should use bsxfun to find the sum:
M=bsxfun(#plus, (1:3).', 1:3)
and for the second formula:
M=-2.^(-bsxfun(#plus, (1:3).', 1:3))

bsxfun(#(x,y)(-2.^(-x-y)), (1:3).', 1:3)
This uses the Answer of Mohsen Nosratinia with the function you wished.

Related

MATLAB : 3 dimensional matrix with multipication with a vector

I have A matrix which is 16x16x155460. I have a B vector which is 12955x1. I want to multiply each 1:16x1:16x1+12*n:12+12*nwith the elements of B(n). So my goal is to find the weighted sum of the A according to B. My way to do this as follows (I don't want to use for-loop and my method gives wrong answer, I could not obtain the 1:12 vectors which is consecutive) :
B = repmat(B,[1 16 16]);
B = permute(B,[2 3 1]);
B = repmat(B,[1 1 12]);
result = B.*(A);
As a small example n=2 :
A(:,:,1)=[1 2; 3 4]
A(:,:,2)=[1 2; 3 4]
A(:,:,3)=[1 2; 3 4]
A(:,:,4)=[1 2; 3 4]
B = [2,3]
Result would be:
result(:,:,1)=A(:,:,1)*B(1);
result(:,:,2)=A(:,:,2)*B(1);
result(:,:,3)=A(:,:,1)*B(2);
result(:,:,4)=A(:,:,2)*B(2);
If I understood the problem correctly, you can use the powerful trio of bsxfun, permute and reshape to solve it, like so -
[M,N,R] = size(A);
mult_out = bsxfun(#times,reshape(A,M,N,numel(B),[]),permute(B(:),[4 3 1 2]))
out = reshape(mult_out,M,N,[])

What is a quick way to compute the euclidean norm of two sets of vectors?

I know that MATLAB works better when most or everything is vectorized. I have two set of vectors X and T. For every vector x in X I want to compute:
this is because I want to compute:
which can be easily expressed as MATLAB linear algebra operations as I wrote above with a dot product. I am hoping that I can speed this up by having those vectors, instead of computing each f(x) with a for loop. Ideally I could have it all vectorized and compute:
I've been think about this for some time now, but it doesn't seem to be a a nice way were a function takes two vectors and computes the norm between each one of them, with out me having to explicitly write the for loop.
i.e. I've implemented the trivial code:
function [ f ] = f_start( x, c, t )
% Computes f^*(x) = sum_i c_i exp( - || x_i - t_i ||^2)
% Inputs:
% x = data point (D x 1)
% c = weights (K x 1)
% t = centers (D x K)
% Outputs:
% f = f^*(x) = sum_k c_k exp( - || x - t_k ||^2)
[~, K] = size(t);
f = 0;
for k=1:K
c_k = c(k);
t_k = t(:, k);
norm_squared = norm(x - t_k, 2)^2;
f = f + c_k * exp( -1 * norm_squared );
end
end
but I was hoping there was a less naive way to do this!
I think you want pdist2 (Statistics Toolbox):
X = [1 2 3;
4 5 6];
T = [1 2 3;
1 2 4;
7 8 9];
result = pdist2(X,T);
gives
result =
0 1.0000 10.3923
5.1962 4.6904 5.1962
Equivalently, if you don't have that toolbox, use bsxfun as follows:
result = squeeze(sqrt(sum(bsxfun(#minus, X, permute(T, [3 2 1])).^2, 2)));
Another method just for kicks
X = [1 2 3;
4 5 6].';
T = [1 2 3;
1 2 4;
7 8 9].';
tT = repmat(T,[1,size(X,2)]);
tX = reshape(repmat(X,[size(T,2),1]),size(tT));
res=reshape(sqrt(sum((tT-tX).^2)).',[size(T,2),size(X,2)]).'

How to multiply each row of a matrix by corresponding column of another matrix in matlab?

I have two matrices A and B. A is N-by-L matrix and B is L-by-N matrix.
A = [1 2 3;
4 5 6];
B = [ 7 8;
9 10;
11 12];
I would like to multiply the each row of the first matrix by the corresponding column of the second matrix. After the multiplication I would have a (Nx1) vector. The result would be
C = [ 1*7 + 2*9 + 3*11,
4*8 + 5*10 + 6*12];
I can perform the multiplication with a for loop, but it is not efficient for large matrices.
ASize = size(A);
for i = 1:ASize(1),
C(i) = A(i,:) * B(:,i);
end
Is there a better way to do this?
I think this should do the trick:
C = sum(A.*B', 2);
I think this will work better and is simple
C=diag(A*B);

Obtain matrix of indices in octave / matlab

Given some multidimensional matrix A in Octave / Matlab,
What's the easiest way to get a matrix of the same size as A where all elements are replaced by their index along the k'th dimension
ie for the matrix
A =
ans(:,:,1) =
0.095287 0.191905
0.226278 0.749100
ans(:,:,2) =
0.076826 0.131639
0.862747 0.699016
I want a function f such that
f(A,1) =
ans(:,:,1) =
1 1
2 2
ans(:,:,2) =
1 1
2 2
f(A,2) =
ans(:,:,1) =
1 2
1 2
ans(:,:,2) =
1 2
1 2
and
f(A, 3) =
ans(:,:,1) =
1 1
1 1
ans(:,:,2) =
2 2
2 2
Also, given a sparse matrix B
What's the easiest way to get another sparse matrix of the same size where the nonzero elements are replaced by their index along the k'th dimension? (so same problem as above, but for only the nonzero elements)
Ideally I'm looking for a way which is well-vectorized for octave (meaning it doesn't explicitly loop over anything)
CLARIFICATION: For the sparse matrix one, I'm looking for a solution which does not involve creating a full size(B) matrix at any point
ndgrid() does what you want, although not in the format you are looking for. If you know the dims of the input A beforehand, you can use the following line to create the N-dimentional mesh grid:
% for matrix a where ndims(a) == 3
[x, y, z] = ndgrid (1:size(a,1), 1:size(a,2), 1:size(a,3));
% x is like f(a, 1)
% y is like f(a, 2)
% z is like f(a, 3)
You may be able to write a custom wrapper around ndgrid() to convert it to the function format you are looking for.
In case anyone's curious, since I didn't know about ndgrid, here's the answer I came up with:
function [y] = indices(a,k)
s = size(a);
n = s(k);
D = length(s);
x = permute(a,[k,1:(k-1),(k+1):D]);
y = reshape(x,n,[]);
y = diag(1:n) * ones(size(y));
y = reshape(y,size(x));
y = permute(y,[(2:k),1,(k+1):D]);
endfunction
function [y] = spindices(a,k)
s = size(a);
n = s(k);
D = length(s);
x = permute(a,[k,1:(k-1),(k+1):D]);
y = reshape(x,n,[]);
y = spdiag(1:n) * spones(y);
y = reshape(y,size(x));
y = permute(y,[(2:k),1,(k+1):D]);
endfunction

how to select specific index in 3rd matrix from third dimention in matlab

I know this is a simple question but difficult to formulate in one sentence to google the answer.So, I have a 3d matrix with size 2x2x3 like this
A(:,:,1) =[1 1; 1 1];
A(:,:,2) =[2 2; 2 2];
A(:,:,3) =[4 4; 4 4];
and matrix B with size 2x2
B = [ 1 2; 2 3];
What i need is to chose from each third dimension in A just one number using matrix B:
for i=1:2,
for j=1:2,
C(i,j) = A(i,j,B(i,j));
end
end
How to that in one line without a loop?
Not really a single line, but without a loop:
[I J] = ind2sub (size(B), 1:numel(B));
linInd = sub2ind (size (A), I, J, B(:)');
C = reshape (A(linInd), size(B));
Here is another variation:
[r,c,~] = size(A);
[J,I] = meshgrid(1:size(B,1), 1:size(B,2));
idx = reshape(I(:) + r*(J(:)-1) + r*c*(B(:)-1), size(B));
C = A(idx)