Raspberry Pi echo on getchar() - raspberry-pi

I need to write terminal for UART on raspberry pi. The idea is to press keys on keyboard connected to my raspberry and send it by UART and then print what raspberry receives by UART.
Problem is in echo on raspberry pi. I don't need this, but I don't know how to disable it. I use this function:
int kbhit(void)
{
struct termios oldt, newt;
int ch;
int oldf;
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
oldf = fcntl(STDIN_FILENO, F_GETFL, 0);
fcntl(STDIN_FILENO, F_SETFL, oldf | O_NONBLOCK);
ch = getchar();
tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
fcntl(STDIN_FILENO, F_SETFL, oldf);
if(ch != EOF)
{
return ch;
}
return 0;
}
Sometimes there is no echo.
For example my input is: abcdefgh
But program returns me this: abbccddeefghh

I just commented line
tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
and it's working without echo. It looks like something which is responsible for clearing echo has little time to do it.

Related

Why is pcap only capturing PTP messages in live capture mode?

I am using a Intel i210-T1 Network Interface Card.
I am running the avnu gptp client (https://github.com/Avnu/gptp) with:
sudo ./daemon_cl -S -V
The other side is a gPTP Master.
I want to live capture incoming UDP packets on an network interface with hardware timestamps.
I can see the UDP Packets with wireshark, so the packets are actually on the wire.
My problem is that pcap doesn't return any packets other than PTP (ethertype 0x88f7) at all.
Is this a bug or am i using pcap the wrong way?
I wrote a minimal example to show my problem.
The code prints:
enp1s0
returnvalue pcap_set_tstamp_type: 0
returnvalue pcap_set_tstamp_precision: 0
returnvalue pcap_activate: 0
and afterwards only:
packet received with ethertype:88f7
#include <iostream>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <pcap/pcap.h>
int main(int argc, char **argv)
{
char errbuf[PCAP_ERRBUF_SIZE];
std::string dev = "enp1s0";
pcap_t* pcap_dev;
int i = 0;
printf("%s\n", dev.c_str());
pcap_dev = pcap_create(dev.c_str(), errbuf);
if(pcap_dev == NULL)
{
printf("pcap_create(): %s\n", errbuf);
exit(1);
}
i = pcap_set_tstamp_type(pcap_dev, PCAP_TSTAMP_ADAPTER_UNSYNCED);
printf("returnvalue pcap_set_tstamp_type: %i\n", i);
i = pcap_set_tstamp_precision(pcap_dev, PCAP_TSTAMP_PRECISION_NANO);
printf("returnvalue pcap_set_tstamp_precision: %i\n", i);
i = pcap_activate(pcap_dev);
printf("returnvalue pcap_activate: %i\n", i);
struct pcap_pkthdr* pkthdr;
const u_char* bytes;
while (pcap_next_ex(pcap_dev, &pkthdr, &bytes))
{
struct ether_header* ethhdr = (struct ether_header*) bytes;
std::cout << "packet received with ethertype:" << std::hex << ntohs(ethhdr->ether_type) << std::endl;
}
}
The solution is to enable promiscuous mode by using function:
https://linux.die.net/man/3/pcap_set_promisc
promiscuous mode disables any filtering by lower layers so you get every message arriving on the interface.
int pcap_set_promisc(pcap_t *p, int promisc);
pcap_set_promisc() sets whether promiscuous mode should be set on a capture handle when the handle is activated. If promisc is non-zero, promiscuous mode will be set, otherwise it will not be set.
Return Value
pcap_set_promisc() returns 0 on success or PCAP_ERROR_ACTIVATED if called on a capture handle that has been activated.

Linux socket hardware timestamping

I'm working on a project researching about network synchronisation. Since I want to achieve the best performance I'm trying to compare software timestamping results with hardware timestamping ones.
I have followed this previously commented issue: Linux kernel UDP reception timestamp but after several tests I got some problems when trying to get hardware reception timestamps.
My scenario is composed of 2 devices, a PC and a Gateworks Ventana board, both devices are supposed to be waiting for packets to be broadcasted in their network and timestamping their reception times, I have tried this code (some parts have been omitted):
int rc=1;
int flags;
flags = SOF_TIMESTAMPING_RX_HARDWARE
| SOF_TIMESTAMPING_RAW_HARDWARE;
rc = setsockopt(sock, SOL_SOCKET,SO_TIMESTAMPING, &flags, sizeof(flags));
rc = bind(sock, (struct sockaddr *) &serv_addr, sizeof(serv_addr));
struct msghdr msg;
struct iovec iov;
char pktbuf[2048];
char ctrl[CMSG_SPACE(sizeof(struct timespec))];
struct cmsghdr *cmsg = (struct cmsghdr *) &ctrl;
msg.msg_control = (char *) ctrl;
msg.msg_controllen = sizeof(ctrl);
msg.msg_name = &serv_addr;
msg.msg_namelen = sizeof(serv_addr);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
iov.iov_base = pktbuf;
iov.iov_len = sizeof(pktbuf);
//struct timeval time_kernel, time_user;
//int timediff = 0;
FILE *f = fopen("server.csv", "w");
if (f == NULL) {
error("Error opening file!\n");
exit(1);
}
fprintf(f, "Time\n");
struct timespec ts;
int level, type;
int i;
for (i = 0; i < 10; i++) {
rc = recvmsg(sock, &msg, 0);
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg = CMSG_NXTHDR(&msg, cmsg))
{
level = cmsg->cmsg_level;
type = cmsg->cmsg_type;
if (SOL_SOCKET == level && SO_TIMESTAMPING == type) {
//ts = (struct timespec *) CMSG_DATA(cmsg);
memcpy(&ts, CMSG_DATA(cmsg), sizeof(ts));
printf("HW TIMESTAMP %ld.%09ld\n", (long)ts.tv_sec, (long)ts.tv_nsec);
}
}
}
printf("COMPLETED\n");
fclose(f);
close(sock);
return 0;
}
In both devices the output I get after receiving a packet:
HW TIMESTAMP 0.000000000
On the other hand if with the same code my flags are:
flags = SOF_TIMESTAMPING_RX_HARDWARE
| SOF_TIMESTAMPING_RX_SOFTWARE
| SOF_TIMESTAMPING_SOFTWARE;
I get proper timestamps:
HW TIMESTAMP 1551721801.970270543
However, they seem to be software-timestamping ones. What would be the correct solution / method to handle hardware timestamping for packets received?
First of all, use ethtool -T "your NIC" to make sure your hardware supports the hardware timestamping feature.
You need to explicitly tell the Linux to enable the hardware timestamping feature of your NIC. In order to to that, you need to have a ioctl() call.
What you have to do is to call it with SIOCSHWTSTAMP, which is a device request code to indicate which device you want to handle as well as what you want to do. For example, there is a code called CDROMSTOP to stop the cdrom drive.
You also need to use a ifreq struct to configure your NIC.
You need something like this:
struct ifreq ifconfig;
strncpy(config.ifr_name, "your NIC name", sizeof(ifconfig.ifr_name));
ioctl("your file descriptor" , SIOCSHWTSTAMP, &ifconfig);
Here are some pages that you can look up to:
ioctl manual page,
ifreq manual page,
Read part 3.

Interpreting keypresses sent to raspberry-pi through uv4l-webrtc datachannel

I apologize if this doesn't make sense since I'm still a newbie with using a raspberry pi and this is my first time posting on StackOverflow.
I am making a web app that lets me stream video to and from a raspberry pi while also letting me send keycodes. The sent keycodes would ultimately let me control servos on a drone. After scouring the internet, I figured that the simplest way to stream 2-way video is by using uv4l so I have it installed along with uv4l-webrtc on my raspberry pi. I hooked up some GPIO pins to a flight controller and I am using pigpio to send PWM signals to it, which I then monitor using CleanFlight.
Right now, I can manipulate with keypresses the roll, pitch, etc. of the flight controller using a python script if I access the pi remotely using VNC, but I would like to ultimately be able to do this through my custom web page that is being served by the uv4l-server. I am trying to use the WebRTC Data Channels, but I'm having some trouble understanding what I would need to do to recognize the messages sent through the data channels. I know that the data channels are opened when a video call is initiated and I've tried the test in this link to see if I can indeed send keycodes to the pi (and I can).
My problem right now is that I have no idea where those sent messages go or how I can get them so I can incorporate them into my python script. Would I need to make a server that would listen for the keycodes being sent to the pi?
tl;dr I have a python script on a raspberry pi to control servos on a flight controller using keypresses and a separate webpage that streams video using WebRTC, but I have no idea how to combine them together using WebRTC data channels.
Thanks to #adminkiam for the solution. Here's a version of the python script that now listens to the socket. It's essentially a variation of this code by the person who made pigpio:
import socket
import time
import pigpio
socket_path = '/tmp/uv4l.socket'
try:
os.unlink(socket_path)
except OSError:
if os.path.exists(socket_path):
raise
s = socket.socket(socket.AF_UNIX, socket.SOCK_SEQPACKET)
ROLL_PIN = 13
PITCH_PIN = 14
YAW_PIN = 15
MIN_PW = 1000
MID_PW = 1500
MAX_PW = 2000
NONE = 0
LEFT_ARROW = 1
RIGHT_ARROW = 2
UP_ARROW = 3
DOWN_ARROW = 4
LESS_BTN = 5
GREATER_BTN = 6
print 'socket_path: %s' % socket_path
s.bind(socket_path)
s.listen(1)
def getch(keyCode):
key = NONE
if keyCode == 188:
key = LESS_BTN
elif keyCode == 190:
key = GREATER_BTN
elif keyCode == 37:
key = LEFT_ARROW
elif keyCode == 39:
key = RIGHT_ARROW
elif keyCode == 38:
key = UP_ARROW
elif keyCode == 40:
key = DOWN_ARROW
return key
def cleanup():
pi.set_servo_pulsewidth(ROLL_PIN, 0)
pi.set_servo_pulsewidth(PITCH_PIN, 0)
pi.set_servo_pulsewidth(YAW_PIN, 0)
pi.stop()
while True:
print 'awaiting connection...'
connection, client_address = s.accept()
print 'client_address %s' % client_address
try:
print 'established connection with', client_address
pi = pigpio.pi()
rollPulsewidth = MID_PW
pitchPulsewidth = MID_PW
yawPulsewidth = MID_PW
pi.set_servo_pulsewidth(ROLL_PIN, rollPulsewidth)
pi.set_servo_pulsewidth(PITCH_PIN, pitchPulsewidth)
pi.set_servo_pulsewidth(YAW_PIN, yawPulsewidth)
while True:
data = connection.recv(16)
print 'received message"%s"' % data
time.sleep(0.01)
key = getch(int(data))
rollPW = rollPulsewidth
pitchPW = pitchPulsewidth
yawPW = yawPulsewidth
if key == UP_ARROW:
pitchPW = pitchPW + 10
if pitchPW > MAX_PW:
pitchPW = MAX_PW
elif key == DOWN_ARROW:
pitchPW = pitchPW - 10
if pitchPW < MIN_PW:
pitchPW = MIN_PW
elif key == LEFT_ARROW:
rollPW = rollPW - 10
if rollPW < MIN_PW:
rollPW = MIN_PW
elif key == RIGHT_ARROW:
rollPW = rollPW + 10
if rollPW > MAX_PW:
rollPW = MAX_PW
elif key == GREATER_BTN:
yawPW = yawPW + 10
if yawPW > MAX_PW:
yawPW = MAX_PW
elif key == LESS_BTN:
yawPW = yawPW - 10
if yawPW < MIN_PW:
yawPW = MIN_PW
if rollPW != rollPulsewidth:
rollPulsewidth = rollPW
pi.set_servo_pulsewidth(ROLL_PIN, rollPulsewidth)
if pitchPW != pitchPulsewidth:
pitchPulsewidth = pitchPW
pi.set_servo_pulsewidth(PITCH_PIN, pitchPulsewidth)
if yawPW != yawPulsewidth:
yawPulsewidth = yawPW
pi.set_servo_pulsewidth(YAW_PIN, yawPulsewidth)
if data:
print 'echo data to client'
connection.sendall(data)
else:
print 'no more data from', client_address
break
finally:
# Clean up the connection
cleanup()
connection.close()
When a WebRTC data channel is created between UV4L and the other WebRTC peer (i.e. a browser, Janus Gateway, etc...), UV4L creates a full-duplex Unix Domain Socket (/tmp/uv4l.socket by default) from/to which you can receive/send messages on the Raspberry Pi. Your python script should just open, listen and read to the socket for the incoming messages from the e.g. web application and/or write the messages to the same socket for the web app to receive them. An example doing this in C++ is under the link to the tutorial you pointed out in your question:
/*
Copyright (c) 2016 info#linux-projects.org
All rights reserved.
Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by the linux-projects.org. The name of the
linux-projects.org may not be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/*
* This is a simple echo server.
* It creates to a unix domain socket of type SOCK_SEQPACKET specified by
* command line, listens to it waiting for incoming messages from clients
* (e.g. UV4L) and replies the received messages back to the senders.
*
* Example:
* $ ./datachannel_server /tmp/uv4l.socket
*
* To compile this program you need boost v1.60 or greater, for example:
* g++ -Wall -I/path/to/boost/include/ -std=c++11 datachannel_server.cpp -L/path/to/boost/lib -l:libboost_coroutine.a -l:libboost_context.a -l:libboost_system.a -l:libboost_thread.a -pthread -o datachannel_server
*/
#include <boost/asio/io_service.hpp>
#include <boost/asio/spawn.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio.hpp>
#include <memory>
#include <cstdio>
#include <array>
#include <functional>
#include <iostream>
#if !defined(BOOST_ASIO_HAS_LOCAL_SOCKETS)
#error Local sockets not available on this platform.
#endif
constexpr std::size_t MAX_PACKET_SIZE = 1024 * 16;
namespace seqpacket {
struct seqpacket_protocol {
int type() const {
return SOCK_SEQPACKET;
}
int protocol() const {
return 0;
}
int family() const {
return AF_UNIX;
}
using endpoint = boost::asio::local::basic_endpoint<seqpacket_protocol>;
using socket = boost::asio::generic::seq_packet_protocol::socket;
using acceptor = boost::asio::basic_socket_acceptor<seqpacket_protocol>;
#if !defined(BOOST_ASIO_NO_IOSTREAM)
/// The UNIX domain iostream type.
using iostream = boost::asio::basic_socket_iostream<seqpacket_protocol>;
#endif
};
}
using seqpacket::seqpacket_protocol;
struct session : public std::enable_shared_from_this<session> {
explicit session(seqpacket_protocol::socket socket) : socket_(std::move(socket)) {}
~session() {
//std::cerr << "session closed\n";
}
void echo(boost::asio::yield_context yield) {
auto self = shared_from_this();
try {
for (;;) {
seqpacket_protocol::socket::message_flags in_flags = MSG_WAITALL, out_flags = MSG_WAITALL;
// Wait for the message from the client
auto bytes_transferred = socket_.async_receive(boost::asio::buffer(data_), in_flags, yield);
// Write the same message back to the client
socket_.async_send(boost::asio::buffer(data_, bytes_transferred), out_flags, yield);
}
} catch (const std::exception& e) {
std::cerr << e.what() << '\n';
socket_.close();
}
}
void go() {
boost::asio::spawn(socket_.get_io_service(), std::bind(&session::echo, this, std::placeholders::_1));
}
private:
seqpacket_protocol::socket socket_;
std::array<char, MAX_PACKET_SIZE> data_;
};
int main(int argc, char* argv[]) {
try {
if (argc != 2) {
std::cerr << "Usage: datachannel_server <file> (e.g. /tmp/uv4l.socket)\n";
std::cerr << "*** WARNING: existing file is removed ***\n";
return EXIT_FAILURE;
}
boost::asio::io_service io_service;
std::remove(argv[1]);
boost::asio::spawn(io_service, [&](boost::asio::yield_context yield) {
seqpacket_protocol::acceptor acceptor_(io_service, seqpacket_protocol::endpoint(argv[1]));
for (;;) {
boost::system::error_code ec;
seqpacket_protocol::socket socket_(io_service);
acceptor_.async_accept(socket_, yield[ec]);
if (!ec)
std::make_shared<session>(std::move(socket_))->go();
}
});
io_service.run();
} catch (std::exception& e) {
std::cerr << "Exception: " << e.what() << "\n";
return EXIT_FAILURE;
}
}

Raspberry error write in i2c socket

I'm trying to control my domotic house by smartphone, the smartphone sends 3-4 byte to Raspberry via Internet(Wi-Fi) and Raspberry send all those bytes to the corresponding Arduino throught I2C bus(I've got two Arduinos).
When I send the commands to Raspberry it shows "Failed to write to the i2c bus"
Anyone can help me please?
int i2csend(msg_t *pmsg)
{
int fd;
/* Open I2C device */
if ((fd = open(device, O_RDWR)) < 0) error ("Can't open I2C device");
if (ioctl(fd, I2C_SLAVE, arduino_addr) < 0) error ("Can't talk to slave");
if (write(fd, (char *)pmsg, n) < n ) printf ("Failed to write to the i2c bus [1]\n");
else
{
read(fd, (char *)pmsg, n);
printf("Ricevuto il messaggio: %c%c %d %d\n", pmsg->tipo, pmsg->gruppo, pmsg->dato[0], pmsg->dato[1]);
}
close(fd);
return 0;
}
When I've used I2C on the raspi, I've never used the 'open' function in an if statement (like you have in the i2csend() function). Here's a sample from a (working) project of mine:
//open file for i2c interface
int fh=open("/dev/i2c-1",O_RDWR);
if (ioctl(fh, I2C_SLAVE, UIBC_ADDR) < 0){
printf("Couldn't establish contact with the UIBC\n");
}

GPS output being incorrectly written to file on SD card- Arduino

I have a sketch to take information (Lat, Long) from an EM-406a GPS receiver and write the information to an SD card on an Arduino shield.
The program is as follows:
#include <TinyGPS++.h>
#include <SoftwareSerial.h>
#include <SD.h>
TinyGPSPlus gps;
SoftwareSerial ss(4, 3); //pins for the GPS
Sd2Card card;
SdVolume volume;
SdFile root;
SdFile file;
void setup()
{
Serial.begin(115200); //for the serial output
ss.begin(4800); //start ss at 4800 baud
Serial.println("gpsLogger by Aaron McRuer");
Serial.println("based on code by Mikal Hart");
Serial.println();
//initialize the SD card
if(!card.init(SPI_FULL_SPEED, 9))
{
Serial.println("card.init failed");
}
//initialize a FAT volume
if(!volume.init(&card)){
Serial.println("volume.init failed");
}
//open the root directory
if(!root.openRoot(&volume)){
Serial.println("openRoot failed");
}
//create new file
char name[] = "WRITE00.TXT";
for (uint8_t i = 0; i < 100; i++){
name[5] = i/10 + '0';
name[6] = i%10 + '0';
if(file.open(&root, name, O_CREAT | O_EXCL | O_WRITE)){
break;
}
}
if(!file.isOpen())
{
Serial.println("file.create");
}
file.print("Ready...\n");
}
void loop()
{
bool newData = false;
//For one second we parse GPS data and report some key values
for (unsigned long start = millis(); millis() - start < 1000;)
{
while (ss.available())
{
char c = ss.read();
//Serial.write(c); //uncomment this line if you want to see the GPS data flowing
if(gps.encode(c)) //did a new valid sentence come in?
newData = true;
}
}
if(newData)
{
file.write(gps.location.lat());
file.write("\n");
file.write(gps.location.lng());
file.write("\n");
}
file.close();
}
When I open up the file on the SD card when the program is finished executing, I get a message that it has an encoding error.
I'm currently inside (and unable to get a GPS signal, thus the 0), but the encoding problem needs to be tackled, and there should be as many lines as there are seconds that the device has been on. There's only that one. What do I need to do to make things work correctly here?
Closing the file in the loop, and never reopening it, is the reason there's only one set of data in your file.
Are you sure gps.location.lat() and gps.location.lng() return strings, not an integer or float? That would explain the binary data and the "encoding error" you see.