MongoDB index on many (nested) fields/attributes - mongodb

In e-commerce application I have documents like this:
{ category:'A', ..., price:122,
attr:{ width:6, height:4, hasLCD:true, lcdType:'some text', ..., a36:null }
}
I.e. every product has many attributes of various simple types.
Now I want to filter products by dynamic queries containing top level fields plus some attributes. For example:
find({category:'A', price:{$lt:200}, ...,
'attr.height':{$lt:6}, 'attr.hasLCD':true, 'attr.lcdType':{$in:[...]}, ...})
And I'd like this to perform fast.
Trying to index on all possible 'attr.*' variants gives me an error (too many compound keys). I also suspect that if I index it that way and then omit one of attrs in query index won't work.
Trying to index on 'attr' as a whole does not help either.
What is the proper way to model this under MongoDB?
Update
I have tried this approach (also mentioned here). I.e. store attributes as array of key-value pairs:
attr2: [ {tag:'lcgType', value:'some text'}, ...
And index it like this:
ensureIndex({ 'attr2.tag':1, 'attr2.value':1 })
And query like this:
find({attr2:{$all:[
{$elemMatch:{tag:'bestseller',value:true}},
{$elemMatch:{tag:'weight',value:{$lte:100}}}
]}})
Now explain() says that it is using "BtreeCursor attr2.tag_1_attr2.value_1" but still "nscanned" : 31607 and the whole execution time have actually increased (compared to non-indexed scenario).
Something is wrong here.
Sub-question
What if I select some (less than 31) most frequently queried attributes and try to index on those. If I put all of them in single compound index:
ensureIndex({'attr.a1':1, 'attr.a2':1, ...})
According to the docs this index won't be used for queries missing attr.a1 attribute.
How to define index in this case?

If you really have to allow a lot of filters, combinations and possibly even sorts, MongoDB is not a good fit because it uses only one index per query. The number of indexes then grows way too fast, because compound keys are somewhat inflexible (that should answer the subquestion) and becomes a performance hog.
Use a search database like ElasticSearch, SolR, etc. instead that comes with the features you need. You can the use a $in on the ids that the search server returned if you want to keep the base information in MongoDB (it's usually a good idea to have the search database simply replicate the information of the primary data store so you don't need to sync changes two-way, which would be a nightmare)

Related

MongoDB: Indexes, Sorting

After having read the official documentations on indexes, sort, intersection, i'm a little bit confuse on how everything work together.
I've trouble making my query use the indexes i've created. I work on a mongodb 3.0.3, on a collection having ~4millions of document.
To simplify, let's say my document is composed of 6 fields:
{
a:<text>,
b:<boolean>,
c:<text>,
d:<boolean>,
e:<date>,
f:<date>
}
The query I want to achieve is the following :
db.mycoll.find({ a:"OK", b:true, c:"ProviderA", d:true, e:{ $gte:ISODate("2016-10-28T12:00:01Z"),$lt:ISODate("2016-10-28T12:00:02") } }).sort({f:1});
So intuitively I've created two indexes
db.mycoll.createIndex({a: 1, b: 1, c: 1, d:1, e:1 }, {background: true,name: "test1"})
db.mycoll.createIndex({f:1}, {background: true,name: "test2"})
But the explain() give me that the first index is not used at all.
I known there is some kind of limitation when there is ranges in play in the filter (in the e field), but I can't find my way around it.
Also instead of having a single index on f, I try a compound index on {e:1,f:1} but it didn't change anything.
So What I have misunderstood?
Thanks for your support.
Update: also I find some time the following predicate for mongodb 2.6 :
A good rule of thumb for queries with sort is to order the indexed fields in this order:
First, the field(s) on which you will query for exact values.
Second, the field(s) on which you will sort.
Finally, field(s) on which you will query for a range of values (e.g., $gt, $lt, $in)
An example of using this rule of thumb is in the section on “Sorting the results of a complex query on a range of values” below, including a link to further reading.
Does this also apply for 3.X version?
Update 2: following above predicate, I created the following index
db.mycoll.createIndex({a: 1, b: 1, c: 1, d:1 , f:1, e:1}, {background: true,name: "test1"})
And for the same query :
db.mycoll.find({ a:"OK", b:true, c:"ProviderA", d:true, e:{ $gte:ISODate("2016-10-28T12:00:01Z"),$lt:ISODate("2016-10-28T12:00:02") } }).sort({f:1});
the index is indeed used. However too much keys seems to be scan, I may need to find a better order the fields in the query/index.
Mongo acts sometimes a bit strange when it comes to the index selection.
Mongo automagically decides what index to use. The smaller an index is the more likely it is used (especially indexes with only one field) - this is my experience. May be this happens because it is more often already loaded in RAM? To find out what index to use when Mongo performs test queries when it is idle. However the result is sometimes unexpected.
Therefore if you know what index to use you can force a query to use a specific index using the $hint option. You should try that.
Your two indexes used in the query and the sort does not overlap so MongoDB can not use them for index intersection:
Index intersection does not apply when the sort() operation requires an index completely separate from the query predicate.

DB Compound indexing best practices Mongo DB

How costly is it to index some fields in MongoDB,
I have a table where i want uniqueness combining two fields, Every where i search they suggested compound index with unique set to true. But what i was doing is " Appending both field1_field2 and making it a key, so that field2 will be always unique for field1.(and add Application logic) As i thought indexing is costly.
And also as MongoDB documentation advices us not to use Custom Object ID like auto incrementing number, I end up giving big numbers to Models like Classes, Students etc, (where i could have used easily used 1,2,3 in sql lite), I didn't think to add a new field for numbering and index that field for querying.
What are the best practices advice for production
The advantage of using compound indexes vs your own indexed field system is that compound indexes allows sorting quicker than regular indexed fields. It also lowers the size of every documents.
In your case, if you want to get the documents sorted with values in field1 ascending and in field2 descending, it is better to use a compound index. If you only want to get the documents that have some specific value contained in field1_field2, it does not really matter if you use compound indexes or a regular indexed field.
However, if you already have field1 and field2 in seperate fields in the documents, and you also have a field containing field1_field2, it could be better to use a compound index on field1 and field2, and simply delete the field containing field1_field2. This could lower the size of every document and ultimately reduce the size of your database.
Regarding the cost of the indexing, you almost have to index field1_field2 if you want to go down that route anyways. Queries based on unindexed fields in MongoDB are really slow. And it does not take much more time adding a document to a database when the document has an indexed field (we're talking 1 millisecond or so). Note that adding an index on many existing documents can take a few minutes. This is why you usually plan the indexing strategy before adding any documents.
TL;DR:
If you have limited disk space or need to sort the results, go with a compound index and delete field1_field2. Otherwise, use field1_field2, but it has to be indexed!

What should the indexing strategy be to support queries that are a combination of different fields?

Lets say I have a User collection, where a document looks like this
{
"name": "Starlord",
"age": 24,
"gender": "Male",
"height": 180,
"weight": 230,
"hobbies": "Flying Spaceships"
}
Now, I want someone to be able to search for User based on one or more of these fields. So I add a compound index containing all these fields in the order above.
The issue is that MongoDB indexing works great when the query fields are a prefix of the indexed fields. For example, if I query by name, age and gender then the performance of the query is great. If I query by name, gender and weight, then the performance of the query is not so great (although it still uses the index and is faster than no-index).
What indexing strategy do you use when you have a use case like this?
The reason why your query by name, age and gender works great while the query by name, gender and weight does not is because the order of the fields matter significantly for compound indexes in MongoDB, especially the index's prefixes. As explained in this page in the documentation, a compound index can support queries on any prefix of its fields. So assuming you created the index in the order you presented the fields, the query for name, age and gender is a prefix of your compound index, while name, gender and weight can only take advantage of the name part of the index.
Supporting all possible combinations of queries on these fields would require you to create enough compound indexes so that all possible queries are prefixes of your indexes. I would say that this is not something you would want to do. Since your question asks about indexing strategies for queries with multiple fields, I would suggest that you look into the specific data access patterns that are most useful for your data set and create a few compound indexes that support these, taking advantage of the prefixes concept and omitting certain fields with low cardinality from the index, such as gender.
If you need to be able to query for all combinations, the number of indexes requires explodes quickly. The feature that comes to the rescue is called "index intersection".
Create a simple index on each field and trust the query optimizer to perform the correct index intersection. This feature is relatively new (from 2.6) and not as feature complete as in the well-known RBDMSses. It makes sense to track the Jira Ticket for index intersections to know the limitations, because the limitations are quite severe. It usually makes sense to carefully mix simple indexes (that can be intersected) and compound indexes (for very common queries).
In your specific case, you can utilize the fact that many fields are numeric and the range of valid values is very limited (e.g., for age, height and weight). The gender field has low selectivity and shouldn't be indexed in any case. Filter the gender in the last step, because it will, on average, only double the amount of data that must be processed.
Creating n! compound indexes is almost certainly not an option for n > 3...

In MongoDB, is one big $or search faster than multiple single searches?

I have a list of about 50 tags in an array, and want to search through my documents to find records that match these tags.
Because they're user-submitted and mongoDB is case-sensitive, I'm using /wildcard/i as a means of searching. I know this is not the fastest way to do a search but I can't think of a better solution.
I can do my query in two ways. The first is to run a for loop over my tags array, and for each result, perform:
db.collection.find({tags: /<tag[x]>/i})
Or, I can collect all of the tags and run one single lookup using $or, like so:
db.collection.find({$or:[{tags:/<tag1>/i},{tags:/<tag2>/i},{tags:/<tag3>/i}, ... {tags:/<tag50>/i}]});
I have tried both, and found using $or to be significantly faster - but because of the work-in-progress state of my application, it's very difficult to tell whether this is because it's actually faster or whether my app is causing significant overhead in other areas (it is).
So for clarification, in MongoDB is a big query performed once faster than small queries performed many times?
EDIT: Another example would be whether looking up 3 individual records based on _id is faster than doing one lookup using {$or:[{_id: ObjectId([id1])},{_id: ObjectId([id2])},{_id: ObjectId([id3])}]}. Is less more?
I recommend you adjust your schema so it keeps a normalized array of tags. When you insert a new document, do it like this:
tags : [ "business", "Computing", "PayPal" ],
lowercaseTags : [ "business", "computing", "paypal" ]
Similarly when you update the tags, update both arrays.
Create an index on lowercaseTags, and then when you want to query them, use a single query with the $in operator, and the normalized form of the search terms.
For example, to search for business iTunes YouTube, use this query:
db.collection.find( { tags : $in: [ "business", "itunes", "youtube" ] } )
This answer gives an example of this approach. It should be loads faster than what you have.
An alternate approach you can take is to create a text index and use the text command.
Both of these approaches are geared toward index optimization, and designing your schema to work well with Mongo. The payoff should be a lot higher than whatever difference there is between a single $or query and 50 simpler queries.

Do I need composite indices if each attribute is indexed in mongodb collection?

Suppose I have a collection in a mongo database with the following documents
{
"name" : "abc",
"email": "abc#xyz.com",
"phone" : "+91 1234567890"
}
The collection has a lot of objects (a million or so), and my application, apart from regularly adding objects to this collection, does a few different types of finds on this data.
One method does a find with all the three attributes (name, email and phone), so I can make a composite index for those three fields to make sure this find works effiently.
db.mycollection.ensureIndex({name:1,email:1,phone:1})
Now, I also have methods in my application which fetch all the objects with the same name (bad example, I know). So I need an index for the name field.
db.mycollection.ensureIndex({name:1})
Gradually, my application grows to a point where I have to index the other fields.
Now, my question. If I have each of the attributes indexed individually, does it still make sense to maintain composite indices for all three attributes (or 2 of the attributes)?
Obviously, this is a bad example... If I were making a collection to store multiple contact info for a person, I'd use arrays. But, this question is purely about the indexes.
It depends on your queries.
If you are doing a query such as:
db.mycollection.find({"name": "abc", email: "abc#xyz.com", phone: "+91 1234567890"});
then a composite index would be the most efficient.
Just to answer my own question for sake of completion:
Compound indexes don't mean that each of the individual attributes are indexed, only the first attribute in the compound index can be used alone in a find with efficiency. The idea is to strike a balance and optimize queries, as too many indexes increase disk storage and insertion time.