Amazon Redshift for SaaS application - amazon-redshift

I am currently testing Redshift for a SaaS near-realtime analytics application.
The queries performance are fine on a 100M rows dataset.
However, the concurrency limit of 15 queries per cluster will become a problem when more users will be using the application at the same time.
I cannot cache all aggregated results since we authorize to customize filters on each query (ad-hoc querying)
The requirements for the application are:
queries must return results within 10s
ad-hoc queries with filters on more than 100 columns
From 1 to 50 clients connected at the same time on the application
dataset growing at 10M rows / day rate
typical queries are SELECT with aggregated function COUNT, AVG with 1 or 2 joins
Is Redshift not correct for this use case? What other technologies would you consider for those requirements?

This question was also posted on the Redshift Forum. https://forums.aws.amazon.com/thread.jspa?messageID=498430&#498430
I'm cross-posting my answer for others who find this question via Google. :)
In the old days we would have used an OLAP product for this, something like Essbase or Analysis Services. If you want to look into OLAP there is an very nice open source implementation called Mondrian that can run over a variety of databases (including Redshift AFAIK). Also check out Saiku for an OSS browser based OLAP query tool.
I think you should test the behaviour of Redshift with more than 15 concurrent queries. I suspect that it will not be user noticeable as the queries will simply queue for a second or 2.
If you prove that Redshift won't work you could test Vertica's free 3-node edition. It's a bit more mature than Redshift (i.e. it will handle more concurrent users) and much more flexible about data loading.
Hadoop/Impala is overly complex for a dataset of your size, in my opinion. It is also not designed for a large number of concurrent queries or short duration queries.
Shark/Spark is designed for the case where you data is arriving quickly and you have a limited set of metrics that you can pre-calculate. Again this does not seem to match your requirements.
Good luck.

Redshift is very sensitive to the keys used in joins and group by/order by. There are no dynamic indexes, so usually you define your structure to suit the tasks.
What you need to ensure is that your joins match the structure 100%. Look at the explain plans - you should not have any redistribution or broadcasting, and no leader node activities (such as Sorting). It sounds like the most critical requirement considering the amount of queries you are going to have.
The requirement to be able to filter/aggregate on arbitrary 100 columns can be a problem as well. If the structure (dist keys, sort keys) don't match the columns most of the time, you won't be able to take advantage of Redshift optimisations. However, these are scalability problems - you can increase the number of nodes to match your performance, you just might be surprised of the costs of the optimal solution.
This may not be a serious problem if the number of projected columns is small, otherwise Redshift will have to hold large amounts of data in memory (and eventually spill) while sorting or aggregating (even in distributed manner), and that can again impact performance.
Beyond scaling, you can always implement sharding or mirroring, to overcome some queue/connection limits, or contact AWS support to have some limits lifted
You should consider pre-aggregation. Redshift can scan billions of rows in seconds as long as it does not need to do transformations like reordering. And it can store petabytes of data - so it's OK if you store data in excess
So in summary, I don't think your use case is not suitable based on just the definition you provided. It might require work, and the details depend on the exact usage patterns.

Related

Data modeling in columnar database vs multi-dimensional for reporting

In my way of learning Redshift (my first columnar database), I am struggling to figure out the approach for designing the model. Columnar database does promote flat table design, yet admits that star schema or snowflake could be a better choice for some cases.
Here is a simple example of where I am struggling
As you can see multi-dimensional approach have few dimensions and 1 fact table. I could have made it snowflake design but I kept it simple for star schema.
Approach 1: Used common columns from tables (in this scenario demographics). This could reduce the table size for Customer & Store but will include the extra dimension.
Approach 2: Flat table design with all the columns
My Questions:
Which approach data modeler use to design data model in columnar databases like Redshift? Or they use different approach?
Considering this example, what is the best way to design a data model for data warehousing.
Which approach is good for reporting (considering that client PC\Laptop would have limited memory). Or even cloud reporting may become costly when heavy data set is used.
Approach 3 will produce a massive amount of data set for reporting. This could be a costly affair if doing reporting (using Power BI or Tableau or any other Self reporting tool)
Multidimenion approach is best for self reporting (cost & performance) but then it defeats the purpose of columnar database.
Approach 1 is also good for reporting but with more joins & complexity.
Sorry, late to the party.
I will post is as answer, because it is too long for a comment.
I saw in chat that test results show that star schema is better. But it was tested on regular (MSSQL), not columnar database (just as vertica, redshift, snowflake, bigquery..).
There is some experience from project implementation where I tested both approaches - OBT and star schema while implementing dwh for reporting. Ths was already more than 2 years ago, so don't expect much details.
Database: Redshift 2 nodes of dc2.8xlarge. Might be a bit overkill, but other option was to have a bunch of lower level nodes, which wouldn't be more cost efficient. This example will be just for one data area.
Data: ~ 6 tables which could be joined as somewhat similar to star schemas. Containing of 3 fact tables and based on denormalization level 5-8 dimensions.
With various approaches and different optimization paths, using star schema it would be common to reach SQL times to about 30 seconds. Which is not bad, but also not too responsive from user perspective.
SQLs on flat denormalized fact tables rarely exceed 5 seconds. Some tables contain more than 100 columns, row counts are between 50M and 100M. To not overcomplicate, we use zstd compression for all columns.
In columnar databases data compresses very well as many similar or same values are used in single column.
We took OBT table approach and there are some pros and cons:
pros:
Responsive reports in reporting tool (most important one)
Fewer objects for ETL developers to handle.
Analysts which query database directly can create simpler queries using less tables.
Don't need to worry about data inconsistencies if some dimensions are outdated, which could happen in star schema.
Easier approach for reporting tool cache clearing.
Easier reporting performance tuning.
Easier modeling in reporting tool, do not need to define table join strategies.
cons:
Might take more space. Didn't really tested this closely as storage space is not an issue for us.
Filters in reporting tools might take a bit longer to provide list of values (select distinct one_column from table)
Table refresh might take a bit longer for one big table compared to multiple smaller tables.
Hopefully this helps.

no sql read and write intensive bigdata table

I am having 10 different queries and a total of 40 columns.
Looking for solutions in available Big data noSQL data bases that will perform read and write intensive jobs (multiple queries with SLA).
Tried with HBase but its fast only for rowkey (scan) search ,for other queries (not running on row key) query response time is quite high.Making data duplication with different row keys is the only option for quick response but for 10 queries making 10 different tables is not a good idea.
Please suggest the alternatives.
Have you tried Druid? It is inspired on Dremel, precursor of Google BigQuery.
From the documentation:
Druid is a good fit for products that require real-time data ingestion of a single, large data stream. Especially if you are targeting no-downtime operation and are building your product on top of a time-oriented summarization of the incoming data stream. When talking about query speed it is important to clarify what "fast" means: with Druid it is entirely within the realm of possibility (we have done it) to achieve queries that run in less than a second across trillions of rows of data.

PostgreSQL tuning best practices for data warehousing

I have found plenty of online and print guides on how to tune and optimize performance for Postgres for OLTP applications, but I haven't found anything of the sort specific to Data Warehousing applications. Since there are so many differences in the types of workload, I'm sure there has to be some differences in how the databases are managed and tuned.
Some of my own:
I have found from the DDL side that I use indexes a lot more liberally, since I usually only worry about inserts once a day and can do batch inserts with index rebuilds.
I will typically use integer surrogate keys to data that typically has more than one natural key for faster joins
I will usually define and maintain a very comprehensive date table that has prebuilt date manipulations (fiscal date as opposed to calendar date, fiscal year-month, starting day of the week, etc) and use it liberally as opposed to using functions in select statements and where statements. This usually helps during CPU-bound aggregate queries.
I was hoping that I would find some information on memory management and other database settings, but I would be happy to hear any useful best practices specific to Postgres-based Data Warehousing.
My experience (admittedly on a pretty small scale when it comes to data warehouses):
Like you mention, pre-aggregating data is easily the most important thing, as it reduces the amount of data that needs to be read by many orders of magnitude.
Avoid short writing transactions, subtransactions and savepoints. This includes exception handling in PL/pgSQL. These burn through the available "transaction ID" space quickly, and cause expensive "wraparound" vacuums that need to rewrite whole tables.
I found that partitioning tables such that each partition individually can fit in the kernel's cache is good for maintenance and migrations, if you ever need to do any. This means you can recreate all indexes on a partition with just 1 seq scan from disk, instead of one scan for each index.
Like Chris already mentioned, be generous with work_mem and maintenance_work_mem; if your workload doesn't fit in RAM then keeping more temporary data in memory saves I/O and CPU time due to smarter query plans (most importantly HashAggregate).
If you need to do huge sorts, it can help to buy a dedicated SSD for storing the temporary files.
From a memory management perspective one of your largest differences is that you can often hope to keep the working OLTP set in memory while this is not the case with OLAP environments. Additionally very often your joined sets are bigger. This means higher work_mem settings can be very helpful and to the extent tables are denormalized this means one can push work_mem a bit higher than it might be otherwise. I am not sure my advice on shared_buffers would change (I prefer to start low and increase, testing performance at each step) but work_mem certainly would need to increase if you are doing reporting on sets of any size.

Best NoSQL approach to handle 100+ million records

I am working on a project were we are batch loading and storing huge volume of data in Oracle database which is constantly getting queried via Hibernate against this 100+ million records table (the reads are much more frequent than writes).
To speed things up we are using Lucene for some of queries (especially geo bounding box queries) and Hibernate second level cache but thats still not enough. We still have bottleneck in Hibernate queries against Oracle (we dont cache 100+ million table entities in Hibernate second level cache due to lack of that much memory).
What additional NoSQL solutions (apart from Lucene) I can leverage in this situation?
Some options I am thinking of are:
Use distributed ehcache (Terracotta) for Hibernate second level to leverage more memory across machines and reduce duplicate caches (right now each VM has its own cache).
To completely use in memory SQL database like H2 but unfortunately those solutions require loading 100+ mln tables into single VM.
Use Lucene for querying and BigTable (or distributed hashmap) for entity lookup by id.
What BigTable implementation will be suitable for this? I was considering HBase.
Use MongoDB for storing data and for querying and lookup by id.
recommending Cassandra with ElasticSearch for a scalable system (100 million is nothing for them). Use cassandra for all your data and ES for ad hoc and geo queries. Then you can kill your entire legacy stack. You may need a MQ system like rabbitmq for data sync between Cass. and ES.
It really depends on your data sets. The number one rule to NoSQL design is to define your query scenarios first. Once you really understand how you want to query the data then you can look into the various NoSQL solutions out there. The default unit of distribution is key. Therefore you need to remember that you need to be able to split your data between your node machines effectively otherwise you will end up with a horizontally scalable system with all the work still being done on one node (albeit better queries depending on the case).
You also need to think back to CAP theorem, most NoSQL databases are eventually consistent (CP or AP) while traditional Relational DBMS are CA. This will impact the way you handle data and creation of certain things, for example key generation can be come trickery.
Also remember than in some systems such as HBase there is no indexing concept. All your indexes will need to be built by your application logic and any updates and deletes will need to be managed as such. With Mongo you can actually create indexes on fields and query them relatively quickly, there is also the possibility to integrate Solr with Mongo. You don’t just need to query by ID in Mongo like you do in HBase which is a column family (aka Google BigTable style database) where you essentially have nested key-value pairs.
So once again it comes to your data, what you want to store, how you plan to store it, and most importantly how you want to access it. The Lily project looks very promising. THe work I am involved with we take a large amount of data from the web and we store it, analyse it, strip it down, parse it, analyse it, stream it, update it etc etc. We dont just use one system but many which are best suited to the job at hand. For this process we use different systems at different stages as it gives us fast access where we need it, provides the ability to stream and analyse data in real-time and importantly, keep track of everything as we go (as data loss in a prod system is a big deal) . I am using Hadoop, HBase, Hive, MongoDB, Solr, MySQL and even good old text files. Remember that to productionize a system using these technogies is a bit harder than installing Oracle on a server, some releases are not as stable and you really need to do your testing first. At the end of the day it really depends on the level of business resistance and the mission-critical nature of your system.
Another path that no one thus far has mentioned is NewSQL - i.e. Horizontally scalable RDBMSs... There are a few out there like MySQL cluster (i think) and VoltDB which may suit your cause.
Again it comes to understanding your data and the access patterns, NoSQL systems are also Non-Rel i.e. non-relational and are there for better suit to non-relational data sets. If your data is inherently relational and you need some SQL query features that really need to do things like Cartesian products (aka joins) then you may well be better of sticking with Oracle and investing some time in indexing, sharding and performance tuning.
My advice would be to actually play around with a few different systems. Look at;
MongoDB - Document - CP
CouchDB - Document - AP
Redis - In memory key-value (not column family) - CP
Cassandra - Column Family - Available & Partition Tolerant (AP)
HBase - Column Family - Consistent & Partition Tolerant (CP)
Hadoop/Hive
VoltDB - A really good looking product, a relation database that is distributed and might work for your case (may be an easier move). They also seem to provide enterprise support which may be more suited for a prod env (i.e. give business users a sense of security).
Any way thats my 2c. Playing around with the systems is really the only way your going to find out what really works for your case.
As you suggest MongoDB (or any similar NoSQL persistence solution) is an appropriate fit for you. We've run tests with significantly larger data sets than the one you're suggesting on MongoDB and it works fine. Especially if you're read heavy MongoDB's sharding and/or distributing reads across replicate set members will allow you to speed up your queries significantly. If your usecase allows for keeping your indexes right balanced your goal of getting close to 20ms queries should become feasable without further caching.
You should also check out the Lily project (lilyproject.org). They have integrated HBase with Solr. Internally they use message queues to keep Solr in sync with HBase. This allows them to have the speed of solr indexing (sharding and replication), backed by a highly reliable data storage system.
you could group requests & split them specific to a set of data & have a single (or a group of servers) process that, here you can have the data available in the cache to improve performance.
e.g.,
say, employee & availability data are handled using 10 tables, these can be handled b a small group of server (s) when you configure hibernate cache to load & handle requests.
for this to work you need a load balancer (which balances load by business scenario).
not sure how much of it can be implemented here.
At the 100M records your bottleneck is likely Hibernate, not Oracle. Our customers routinely have billions of records in the individual fact tables of our Oracle-based data warehouse and it handles them fine.
What kind of queries do you execute on your table?

NoSQL & AdHoc Queries - Millions of Rows

I currently run a MySQL-powered website where users promote advertisements and gain revenue every time someone completes one. We log every time someone views an ad ("impression"), every time a user clicks an add ("click"), and every time someone completes an ad ("lead").
Since we get so much traffic, we have millions of records in each of these respective tables. We then have to query these tables to let users see how much they have earned, so we end up performing multiple queries on tables with millions and millions of rows multiple times in one request, hundreds of times concurrently.
We're looking to move away from MySQL and to a key-value store or something along those lines. We need something that will let us store all these millions of rows, query them in milliseconds, and MOST IMPORTANTLY, use adhoc queries where we can query any single column, so we could do things like:
FROM leads WHERE country = 'US' AND user_id = 501 (the NoSQL equivalent, obviously)
FROM clicks WHERE ad_id = 1952 AND user_id = 200 AND country = 'GB'
etc.
Does anyone have any good suggestions? I was considering MongoDB or CouchDB but I'm not sure if they can handle querying millions of records multiple times a second and the type of adhoc queries we need.
Thanks!
With those requirements, you are probably better off sticking with SQL and setting up replication/clustering if you are running into load issues. You can set up indexing on a document database so that those queries are possible, but you don't really gain anything over your current system.
NoSQL systems generally improve performance by leaving out some of the more complex features of relational systems. This means that they will only help if your scenario doesn't require those features. Running ad hoc queries on tabular data is exactly what SQL was designed for.
CouchDB's map/reduce is incremental which means it only processes a document once and stores the results.
Let's assume, for a moment, that CouchDB is the slowest database in the world. Your first query with millions of rows takes, maybe, 20 hours. That sounds terrible. However, your second query, your third query, your fourth query, and your hundredth query will take 50 milliseconds, perhaps 100 including HTTP and network latency.
You could say CouchDB fails the benchmarks but gets honors in the school of hard knocks.
I would not worry about performance, but rather if CouchDB can satisfy your ad-hoc query requirements. CouchDB wants to know what queries will occur, so it can do the hard work up-front before the query arrives. When the query does arrive, the answer is already prepared and out it goes!
All of your examples are possible with CouchDB. A so-called merge-join (lots of equality conditions) is no problem. However CouchDB cannot support multiple inequality queries simultaneously. You cannot ask CouchDB, in a single query, for users between age 18-40 who also clicked fewer than 10 times.
The nice thing about CouchDB's HTTP and Javascript interface is, it's easy to do a quick feasibility study. I suggest you try it out!
Most people would probably recommend MongoDB for a tracking/analytic system like this, for good reasons. You should read the „MongoDB for Real-Time Analytics” chapter from the „MongoDB Definitive Guide” book. Depending on the size of your data and scaling needs, you could get all the performance, schema-free storage and ad-hoc querying features. You will need to decide for yourself if issues with durability and unpredictability of the system are risky for you or not.
For a simpler tracking system, Redis would be a very good choice, offering rich functionality, blazing speed and real durability. To get a feel how such a system would be implemented in Redis, see this gist. The downside is, that you'd need to define all the „indices” by yourself, not gain them for „free”, as is the case with MongoDB. Nevertheless, there's no free lunch, and MongoDB indices are definitely not a free lunch.
I think you should have a look into how ElasticSearch would enable you:
Blazing speed
Schema-free storage
Sharding and distributed architecture
Powerful analytic primitives in the form of facets
Easy implementation of „sliding window”-type of data storage with index aliases
It is in heart a „fulltext search engine”, but don't get yourself confused by that. Read the „Data Visualization with ElasticSearch and Protovis“ article for real world use case of ElasticSearch as a data mining engine.
Have a look on these slides for real world use case for „sliding window” scenario.
There are many client libraries for ElasticSearch available, such as Tire for Ruby, so it's easy to get off the ground with a prototype quickly.
For the record (with all due respect to #jhs :), based on my experience, I cannot imagine an implementation where Couchdb is a feasible and useful option. It would be an awesome backup storage for your data, though.
If your working set can fit in the memory, and you index the right fields in the document, you'd be all set. Your ask is not something very typical and I am sure with proper hardware, right collection design (denormalize!) and indexing you should be good to go. Read up on Mongo querying, and use explain() to test the queries. Stay away from IN and NOT IN clauses that'd be my suggestion.
It really depends on your data sets. The number one rule to NoSQL design is to define your query scenarios first. Once you really understand how you want to query the data then you can look into the various NoSQL solutions out there. The default unit of distribution is key. Therefore you need to remember that you need to be able to split your data between your node machines effectively otherwise you will end up with a horizontally scalable system with all the work still being done on one node (albeit better queries depending on the case).
You also need to think back to CAP theorem, most NoSQL databases are eventually consistent (CP or AP) while traditional Relational DBMS are CA. This will impact the way you handle data and creation of certain things, for example key generation can be come trickery.
Also remember than in some systems such as HBase there is no indexing concept. All your indexes will need to be built by your application logic and any updates and deletes will need to be managed as such. With Mongo you can actually create indexes on fields and query them relatively quickly, there is also the possibility to integrate Solr with Mongo. You don’t just need to query by ID in Mongo like you do in HBase which is a column family (aka Google BigTable style database) where you essentially have nested key-value pairs.
So once again it comes to your data, what you want to store, how you plan to store it, and most importantly how you want to access it. The Lily project looks very promising. The work I am involved with we take a large amount of data from the web and we store it, analyse it, strip it down, parse it, analyse it, stream it, update it etc etc. We dont just use one system but many which are best suited to the job at hand. For this process we use different systems at different stages as it gives us fast access where we need it, provides the ability to stream and analyse data in real-time and importantly, keep track of everything as we go (as data loss in a prod system is a big deal) . I am using Hadoop, HBase, Hive, MongoDB, Solr, MySQL and even good old text files. Remember that to productionize a system using these technogies is a bit harder than installing MySQL on a server, some releases are not as stable and you really need to do your testing first. At the end of the day it really depends on the level of business resistance and the mission-critical nature of your system.
Another path that no one thus far has mentioned is NewSQL - i.e. Horizontally scalable RDBMSs... There are a few out there like MySQL cluster (i think) and VoltDB which may suit your cause.
Again it comes to understanding your data and the access patterns, NoSQL systems are also Non-Rel i.e. non-relational and are there for better suit to non-relational data sets. If your data is inherently relational and you need some SQL query features that really need to do things like Cartesian products (aka joins) then you may well be better of sticking with Oracle and investing some time in indexing, sharding and performance tuning.
My advice would be to actually play around with a few different systems. However for your use case I think a Column Family database may be the best solution, I think there are a few places which have implemented similar solutions to very similar problems (I think the NYTimes is using HBase to monitor user page clicks). Another great example is Facebook and like, they are using HBase for this. There is a really good article here which may help you along your way and further explain some points above. http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-analytics-system-hbase-to-process-20.html
Final point would be that NoSQL systems are not the be all and end all. Putting your data into a NoSQL database does not mean its going to perform any better than MySQL, Oracle or even text files... For example see this blog post: http://mysqldba.blogspot.com/2010/03/cassandra-is-my-nosql-solution-but.html
I'd have a look at;
MongoDB - Document - CP
CouchDB - Document - AP
Redis - In memory key-value (not column family) - CP
Cassandra - Column Family - Available & Partition Tolerant (AP)
HBase - Column Family - Consistent & Partition Tolerant (CP)
Hadoop/Hive - Also have a look at Hadoop streaming...
Hypertable - Another CF CP DB.
VoltDB - A really good looking product, a relation database that is distributed and might work for your case (may be an easier move). They also seem to provide enterprise support which may be more suited for a prod env (i.e. give business users a sense of security).
Any way thats my 2c. Playing around with the systems is really the only way your going to find out what really works for your case.