UNION operation in Aerospike or Couchbase - nosql

I am trying to do a UNION operation in Aerospike(No-Sql database). However there is no such operation provided by it's query language.
How we can go for a UNION operation in a No-Sql database like Aerospike. I believe this is also applicable to other NoSql database like Couchbase, as I cannot find a supported construct in them as well.
As an example, Let's say I have a collection {key1:value1, key2:value2, key3:value3}. I would be interested in getting the set of collections as follows.
SELECT * from namespace.collections where key2 = someValue and key1=someValue
UNION
SELECT * from namespace.collections where key1 = someValue and key3=someValue

Aerospike does not support UNIONs or JOINs natively.
I do not know any NoSQL database which supports this.

I first learned about Aerospike after your question, but i'm working with Couchbase for about half a year. If I understood correctly the principle of operation of these databases is the same. We have a very large and non-trivial hashmap and can only perform get and set operations. No UNION, no JOIN, no other relational operations on sets. So, we can only solve this problem on our client side by out custom way. We can get from DB "Bin" or "Json" and combine them in the way we think is right. If you tell us more about your problem, I'll gladly try to help you.

Related

Mongodb running ordinary sql

Why can I not use regular SQL queries like select *from student (assuming there is a table called student) in MongoDB, although they say it is Not only SQL (NoSql)?
SQL is a domain-specific language used in programming and designed for
managing data held in a relational database management system (RDBMS)
Wouldn't it be quite confusing to use such a specific language to query data from a DBMS (MongoDB) that is structurally different from RDBMS, where there is no concept of table, rows and columns, where joins don't exist, where you can nest documents into other documents following no defined schema, and so on?
The point is that the difference between SQL and Mongo query language is not just the syntax, it is also the semantics. A Mongo query does not say the same thing of a SQL query just in a different language, it says a different thing at all.
Sure you can find a direct Mongo translation for basic SQL query, like a simple SELECT item, status from inventory WHERE status = "A" but how would you translate a JOIN to Mongo, or how would you query a nested document using SQL?
I'm not sure I fully understand the question.... But I'll give it a go.
NoSQL is a non-relational database and stands for "Not only SQL"... As for not being able to use it that is because MongoDB has their own terminology and such.
In MongoDB terms a collection is the same as a table. A collection is a grouping of MongoDB documents (A document is a record in MongoDB collection that is the basic unit of data in MongoDB)
In order to translate your statement
select *from student
to MongoDB we would use
db.student.find()
Notice the different syntax in statements. They each have their use case it is just all finding which one fits yours. There are numerous differences between the two beyond syntax such as schema, architecture and how they work.
For more information on this see the following link:
MongoDB terminology versus SQL

What is the fundmental difference between MongoDB / NoSQL which allows faster aggregation (MapReduce) compared to MySQL

Greeting!
I have the following problem. I have a table with huge number of rows which I need to search and then group search results by many parameters. Let's say the table is
id, big_text, price, country, field1, field2, ..., fieldX
And we run a request like this
SELECT .... WHERE
[use FULLTEXT index to MATCH() big_text] AND
[use some random clauses that anyway render indexes useless,
like: country IN (1,2,65,69) and price<100]
This we be displayed as search results and then we need to take these search results and group them by a number of fields to generate search filters
(results) GROUP BY field1
(results) GROUP BY field2
(results) GROUP BY field3
(results) GROUP BY field4
This is a simplified case of what I need, the actual task at hand is even more problematic, for example sometimes the first results query does also its own GROUP BY. And example of such functionality would be this site
http://www.indeed.com/q-sales-jobs.html
(search results plus filters on the left)
I've done and still doing a deep research on how MySQL functions and at this point I totally don't see this possible in MySQL. Roughly speaking MySQL table is just a heap of rows lying on HDD and indexes are tiny versions of these tables sorted by the index field(s) and pointing to the actual rows. That's a super oversimplification of course but the point is I don't see how it is possible to fix this at all, i.e. how to use more than one index, be able to do fast GROUP BY-s (by the time query reaches GROUP BY index is completely useless because of range searches and other things). I know that MySQL (or similar databases) have various helpful things such index merges, loose index scans and so on but this is simply not adequate - the queries above will still take forever to execute.
I was told that the problem can be solved by NoSQL which makes use of some radically new ways of storing and dealing with data, including aggregation tasks. What I want to know is some quick schematic explanation of how it does this. I mean I just want to have a quick glimpse at it so that I could really see that it does that because at the moment I can't understand how it is possible to do that at all. I mean data is still data and has to be placed in memory and indexes are still indexes with all their limitation. If this is indeed possible, I'll then start studying NoSQL in detail.
PS. Please don't tell me to go and read a big book on NoSQL. I've already done this for MySQL only to find out that it is not usable in my case :) So I wanted to have some preliminary understanding of the technology before getting a big book.
Thanks!
There are essentially 4 types of "NoSQL", but three of the four are actually similar enough that an SQL syntax could be written on top of it (including MongoDB and it's crazy query syntax [and I say that even though Javascript is one of my favorite languages]).
Key-Value Storage
These are simple NoSQL systems like Redis, that are basically a really fancy hash table. You have a value you want to get later, so you assign it a key and stuff it into the database, you can only query a single object at a time and only by a single key.
You definitely don't want this.
Document Storage
This is one step up above Key-Value Storage and is what most people talk about when they say NoSQL (such as MongoDB).
Basically, these are objects with a hierarchical structure (like XML files, JSON files, and any other sort of tree structure in computer science), but the values of different nodes on the tree can be indexed. They have a higher "speed" relative to traditional row-based SQL databases on lookup because they sacrifice performance on joining.
If you're looking up data in your MySQL database from a single table with tons of columns (assuming it's not a view/virtual table), and assuming you have it indexed properly for your query (that may be you real problem, here), Document Databases like MongoDB won't give you any Big-O benefit over MySQL, so you probably don't want to migrate over for just this reason.
Columnar Storage
These are the most like SQL databases. In fact, some (like Sybase) implement an SQL syntax while others (Cassandra) do not. They store the data in columns rather than rows, so adding and updating are expensive, but most queries are cheap because each column is essentially implicitly indexed.
But, if your query can't use an index, you're in no better shape with a Columnar Store than a regular SQL database.
Graph Storage
Graph Databases expand beyond SQL. Anything that can be represented by Graph theory, including Key-Value, Document Database, and SQL database can be represented by a Graph Database, like neo4j.
Graph Databases make joins as cheap as possible (as opposed to Document Databases) to do this, but they have to, because even a simple "row" query would require many joins to retrieve.
A table-scan type query would probably be slower than a standard SQL database because of all of the extra joins to retrieve the data (which is stored in a disjointed fashion).
So what's the solution?
You've probably noticed that I haven't answered your question, exactly. I'm not saying "you're finished," but the real problem is how the query is being performed.
Are you absolutely sure you can't better index your data? There are things such as Multiple Column Keys that could improve the performance of your particular query. Microsoft's SQL Server has a full text key type that would be applicable to the example you provided, and PostgreSQL can emulate it.
The real advantage most NoSQL databases have over SQL databases is Map-Reduce -- specifically, the integration of a full Turing-complete language that runs at high speed that query constraints can be written in. The querying function can be written to quickly "fail out" of non-matching queries or quickly return with a success on records that meet "priority" requirements, while doing the same in SQL is a bit more cumbersome.
Finally, however, the exact problem you're trying to solve: text search with optional filtering parameters, is more generally known as a search engine, and there are very specialized engines to handle this particular problem. I'd recommend Apache Solr to perform these queries.
Basically, dump the text field, the "filter" fields, and the primary key of the table into Solr, let it index the text field, run the queries through it, and if you need the full record after that, query your SQL database for the specific index you got from Solr. It uses some more memory and requires a second process, but will probably best suite your needs, here.
Why all of this text to get to this answer?
Because the title of your question doesn't really have anything to do with the content of your question, so I answered both. :)

Why is multi-value field a bad idea in relational databases

Having been working with Mongodb and Solr/Lucene, I am starting to wonder why multi-value field for relational databases are (generally) considered an bad idea?
I am aware of the theoretical foundation of relational database and normalization. In practice, however, I ran into many use cases where I end up using an meta table of key-value pairs to supplement the main table, such as in the cases of tagging, where I wish I don't have to make multiple joins to look up the data. Or where requirements suddenly changed from having to support an single author to multiple authors per article.
So, what are some disadvantages of having multi-value fields or did the vendor choose not to support it since it not part of the SQL standard?
The main disadvantage is query bias. The phenomenon that such databases tend to get designed with one particular kind of query in mind, and turn out to be difficult to handle when other queries need to be written.
Suppose you have Students and Courses, and you model all of that so that you can say, in a single row in a single table, "John Doe takes {French, Algebra, Relational Theory}" and "Jane Doe takes {German, Functional Computing, Relational Theory}".
That makes it easy to query "what are all the courses followed by ...", but try and imagine what it would take to produce the answer to "what are all the students who follow Relational Theory".
Try and imagine all the things the system should itself be doing to give such a query (if it were possible to write it) any chance of performing reasonably ...
The query bias is assuming that SQL is a always a good query language. The fact is it is sometimes an excellent query language, but it has never been one size fits all. Multivalue databases allow you to pack multiple values and handle 'alternate perspective' queries.
Examples of MVDBs: UniData http://u2.rocketsoftware.com/products/u2-unidata, OpenInsight http://www.revelation.com/, Reality http://www.northgate-is.com/. There are many others.
Their query languages support what you are looking to do.
I think this has its roots in the fact that there is no simple, standard way to map a collection to a column in the Relational world. A mutifield value is basically a simple collection (an array of strings in most use cases), which is difficult to represent as a column. Some RDBMS support this by using a delimiter but then again, it starts to feel like an anti-pattern even if the DB driver lets you use multi-value fields in a relational database. Databases like MongoDB rely on a JSON-like structure to define the data, where collections are easily mapped and retrieved.

Extract to MongoDB for analysis

I have a relational database with about 300M customers and their attributes from several perspectives (360).
To perform some analytics I intent to make an extract to a MongoDB in order to have a 'flat' representation that is more suited to apply data mining techniques.
Would that make sense? Why?
Thanks!
No.
Its not storage that would be the concern here, its your flattening strategy.
How and where you store the flattened data is a secondary concern, note MongoDB is a document database and not inherently flat anyway.
Once you have your data in the shape that is suitable for your analytics, then, look at storage strategies, MongoDB might be suitable or you might find that something that allows easy Map Reduce type functionality would be better for analysis... (HBase for example)
It may make sense. One thing you can do is setup MongoDB in a horizontal scale-out setup. Then with the right data structures, you can run queries in parallel across the shards (which it can do for you automatically):
http://www.mongodb.org/display/DOCS/Sharding
This could make real-time analysis possible when it otherwise wouldn't have been.
If you choose your data models right, you can speed up your queries by avoiding any sorts of joins (again good across horizontal scale).
Finally, there is plenty you can do with map/reduce on your data too.
http://www.mongodb.org/display/DOCS/MapReduce
One caveat to be aware of is there is nothing like SQL Reporting Services for MongoDB AFAIK.
I find MongoDB's mapreduce to be slow (however they are working on improving it, see here: http://www.dbms2.com/2011/04/04/the-mongodb-story/ ).
Maybe you can use Infobright's community edition for analytics? See here: http://www.infobright.com/Community/
A relational db like Postgresql can do analytics too (afaik MySQL can't do a hash join but other relational db's can).

CouchDB and MongoDB really search over each document with JavaScript?

From what I understand about these two "Not only SQL" databases. They search over each record and pass it to a JavaScript function you write which calculates which results are to be returned by looking at each one.
Is that actually how it works? Sounds worse than using a plain RBMS without any indexed keys.
I built my schemas so they don't require join operations which leaves me with simple searches on indexed int columns. In other words, the columns are in RAM and a quick value check through them (WHERE user_id IN (12,43,5,2) or revision = 4) gives the database a simple list of ID's which it uses to find in the actual rows in the massive data collection.
So I'm trying to imagine how in the world looking through every single row in the database could be considered acceptable (if indeed this is how it works). Perhaps someone can correct me because I know I must be missing something.
#Xeoncross
I built my schemas so they don't require join operations which leaves me with simple searches on indexed int columns. In other words, the columns are in RAM and a quick value check through them (WHERE user_id IN (12,43,5,2) or revision = 4)
Well then, you'll love MongoDB. MongoDB support indexes so you can index user_id and revision and this query will be able to return relatively quickly.
However, please note that many NoSQL DBs only support Key lookups and don't necessarily support "secondary indexes" so you have to do you homework on this one.
So I'm trying to imagine how in the world looking through every single row in the database could be considered acceptable (if indeed this is how it works).
Well if you run a query in an SQL-based database and you don't have an index that database will perform a table scan (i.e.: looking through every row).
They search over each record and pass it to a JavaScript function you write which calculates which results are to be returned by looking at each one.
So in practice most NoSQL databases support this. But please never use it for real-time queries. This option is primarily for performing map-reduce operations that are used to summarize data.
Here's maybe a different take on NoSQL. SQL is really good at relational operations, however relational operations don't scale very well. Many of the NoSQL are focused on Key-Value / Document-oriented concepts instead.
SQL works on the premise that you want normalized non-repeated data and that you to grab that data in big sets. NoSQL works on the premise that you want fast queries for certain "chunks" of data, but that you're willing to wait for data dependent on "big sets" (running map-reduces in the background).
It's a big trade-off, but if makes a lot of sense on modern web apps. Most of the time is spent loading one page (blog post, wiki entry, SO question) and most of the data is really tied to or "hanging off" that element. So the concept of grabbing everything you need with one query horizontally-scalable query is really useful.
It's the not the solution for everything, but it is a really good option for lots of use cases.
In terms of CouchDB, the Map function can be Javascript, but it can also be Erlang. (or another language altogether, if you pull in a 3rd Party View Server)
Additionally, Views are calculated incrementally. In other words, the map function is run on all the documents in the database upon creation, but further updates to the database only affect the related portions of the view.
The contents of a view are, in some ways, similar to an indexed field in an RDBMS. The output is a set of key/value pairs that can be searched very quickly, as they are stored as b-trees, which some RDBMSs use to store their indexes.
Think CouchDB stores the docs in a btree according to the "index" (view) and just walks this tree.. so it's not searching..
see http://guide.couchdb.org/draft/btree.html
You should study them up a bit more. It's not "worse" than and RDMBS it's different ... in fact, given certain domains/functions the "NoSQL" paradigm works out to be much quicker than traditional and in some opinions, outdated, RDMBS implementations. Think Google's Big Table platform and you get what MongoDB, Riak, CouchDB, Cassandra (Facebook) and many, many others are trying to accomplish. The primary difference is that most of these NoSQL solutions focus on Key/Value stores (some call these "document" databases) and have limited to no concept of relationships (in the primary/foreign key respect) and joins. Join operations on tables can be very expensive. Also, let's not forget the object relational impedance mismatch issue... You don't need an ORM to access MongoDB. It can actually store your code object (or document) as it is in memory. Can you imagine the savings in lines of code and complexity!? db4o is another lightweight solution that does this.
I don't know what you mean when you say "Not only SQL" database? It's a NoSQL paradigm - wherein no SQL is used to query the underlying data store of the system. NoSQL also means not an RDBMS which SQL is generally built on top of. Although, MongoDB does has an SQL like syntax that can be used from .NET when retrieving data - it's called NoRM.
I will say I've only really worked with Riak and MongoDB... I'm by no means familiar with Cassandra or CouchDB past a reading level and feature set comprehension. I prefer to use MongoDB over them all. Riak was nice too but not for what I needed. You should download a few of these NoSQL solutions and you will get the concept. Check out db4o, MongoDB and Riak as I've found them to be the easiest with more support for .NET based languages. It will just make sense for certain applications. All in all, the NoSQL or Document databse or OODBMS ... whatever you want to call it is very appealing and gaining lots of movement.
I also forgot about your javascript question... MongoDB has JavaScript "bindings" that enable it to be used as one method of searching for data. Riak handles data via a JSON format. MongoDB uses BSON I believe and I can't remember what the others use. In any case, the point is instead of SQL (structured query language) to "ask" the database for information some of these (MongoDB being one) use Javascript and/or RESTful syntax to ask the NoSQL system for data. I believe CouchDB and Riak can be queried over HTTP to which makes them very accessible. Not to mention, that's pretty frickin cool.
Do your research.... download them, they are all free and OSS.
db4o: http://www.db4o.com/ (Java & .NET versions)
MongoDB: mongodb.org/
Riak: http://www.basho.com/Riak.html
NoRM: http://thechangelog.com/post/436955815/norm-bringing-mongodb-to-net-linq-and-mono