Matlab best technique to remove outliers in data - matlab

I have 2 columns x, y of 100 points each. I would like to remove the outliers data and refill their gap with the average value of the points near to them. Firstly, can I do that? is any Matlab function? Secondly, if yes, what is the best technique to make that?
E.g:
x = 1:1:100
y = rand(1,99)
y(end+1)=2
In this case, not so similar to my problem, I would like to remove value 2 at the end and to be replaced with one similar to their neighbor points. In my case the distribution of the [x,y] is a non linear function, having few outliers.

It depends on what you mean by outlier. If you assume that outliers are more than three standard deviations from the median, for example, you could do this
all_idx = 1:length(x)
outlier_idx = abs(x - median(x)) > 3*std(x) | abs(y - median(y)) > 3*std(y) % Find outlier idx
x(outlier_idx) = interp1(all_idx(~outlier_idx), x(~outlier_idx), all_idx(outlier_idx)) % Linearly interpolate over outlier idx for x
y(outlier_idx) = interp1(all_idx(~outlier_idx), y(~outlier_idx), all_idx(outlier_idx)) % Do the same thing for y
This code will just remove the outliers and linearly interpolate over their positions using the closest values that are not outliers.

Related

How to make a vector that follows a certain trend?

I have a set of data with over 4000 points. I want to exclude grooves from them, ideally from the point from which they start. The data look for example like this:
The problem with this is the noise I get at the top of the plateaus. I have an idea, in which I would take an average value of the most common within some boundaries (again, ideally sth like the red line here:
and then I would construct a temporary matrix, which would fill up one by one with Y if they are less than this average. If the Y(i) would rise above average, the matrix would find its minima and compare it with the global minima. If the temporary matrix's minima wouldn't be sth like 80% of the global minima, it would be discarded as noise.
I've tried using mean(Y), interpolating and fitting it in a polynomial (the green line) - none of those method would cut it to the point I would be satisfied.
I need this to be extremely robust and it doesn't need to be quick. The top and bottom values can vary a lot, as well as the shape of the plateaus. The groove width is more or less the same.
Do you have any ideas? Again, the point is to extract the values that would make the groove.
How about a median filter?
Let's define some noisy data similar to yours, and plot it in blue:
x = .2*sin((0:9999)/1000); %// signal
x(1000:1099) = x(1000:1099) + sin((0:99)/50*pi); %// noise: spike
x(5000:5199) = x(5000:5199) - sin((0:199)/100*pi); %// noise: wider spike
x = x + .05*sin((0:9999)/10); %// noise: high-freq ripple
plot(x)
Now apply the median filter (using medfilt2 from the Image Processing Toolbox) and plot in red. The parameter k controls the filter memory. It should chosen to be large compared to noise variations, and small compared to signal variations:
k = 500; %// filter memory. Choose as needed
y = medfilt2(x,[1 k]);
hold on
plot(y, 'r', 'linewidth', 2)
In case you don't have the image processing toolbox and can't use medfilt2 a method that's more manual. Skip the extreme values, and do a curve fit with sin1 as curve type. Note that this will only work if the signal is in fact a sine wave!
x = linspace(0,3*pi,1000);
y1 = sin(x) + rand()*sin(100*x).*(mod(round(10*x),5)<3);
y2 = 20*(mod(round(5*x),5) == 0).*sin(20*x);
y = y1 + y2; %// A messy sine-wave
yy = y; %// Store the messy sine-wave
[~, idx] = sort(y);
y(idx(1:round(0.15*end))) = y(idx(round(0.15*end))); %// Flatten out the smallest values
y(idx(round(0.85*end):end)) = y(idx(round(0.85*end)));%// Flatten out the largest values
[foo goodness output] = fit(x.',y.', 'sin1'); %// Do a curve fit
plot(foo,x,y) %// Plot it
hold on
plot(x,yy,'black')
Might not be perfect, but it's a step in the right direction.

Computing a moving average

I need to compute a moving average over a data series, within a for loop. I have to get the moving average over N=9 days. The array I'm computing in is 4 series of 365 values (M), which itself are mean values of another set of data. I want to plot the mean values of my data with the moving average in one plot.
I googled a bit about moving averages and the "conv" command and found something which i tried implementing in my code.:
hold on
for ii=1:4;
M=mean(C{ii},2)
wts = [1/24;repmat(1/12,11,1);1/24];
Ms=conv(M,wts,'valid')
plot(M)
plot(Ms,'r')
end
hold off
So basically, I compute my mean and plot it with a (wrong) moving average. I picked the "wts" value right off the mathworks site, so that is incorrect. (source: http://www.mathworks.nl/help/econ/moving-average-trend-estimation.html) My problem though, is that I do not understand what this "wts" is. Could anyone explain? If it has something to do with the weights of the values: that is invalid in this case. All values are weighted the same.
And if I am doing this entirely wrong, could I get some help with it?
My sincerest thanks.
There are two more alternatives:
1) filter
From the doc:
You can use filter to find a running average without using a for loop.
This example finds the running average of a 16-element vector, using a
window size of 5.
data = [1:0.2:4]'; %'
windowSize = 5;
filter(ones(1,windowSize)/windowSize,1,data)
2) smooth as part of the Curve Fitting Toolbox (which is available in most cases)
From the doc:
yy = smooth(y) smooths the data in the column vector y using a moving
average filter. Results are returned in the column vector yy. The
default span for the moving average is 5.
%// Create noisy data with outliers:
x = 15*rand(150,1);
y = sin(x) + 0.5*(rand(size(x))-0.5);
y(ceil(length(x)*rand(2,1))) = 3;
%// Smooth the data using the loess and rloess methods with a span of 10%:
yy1 = smooth(x,y,0.1,'loess');
yy2 = smooth(x,y,0.1,'rloess');
In 2016 MATLAB added the movmean function that calculates a moving average:
N = 9;
M_moving_average = movmean(M,N)
Using conv is an excellent way to implement a moving average. In the code you are using, wts is how much you are weighing each value (as you guessed). the sum of that vector should always be equal to one. If you wish to weight each value evenly and do a size N moving filter then you would want to do
N = 7;
wts = ones(N,1)/N;
sum(wts) % result = 1
Using the 'valid' argument in conv will result in having fewer values in Ms than you have in M. Use 'same' if you don't mind the effects of zero padding. If you have the signal processing toolbox you can use cconv if you want to try a circular moving average. Something like
N = 7;
wts = ones(N,1)/N;
cconv(x,wts,N);
should work.
You should read the conv and cconv documentation for more information if you haven't already.
I would use this:
% does moving average on signal x, window size is w
function y = movingAverage(x, w)
k = ones(1, w) / w
y = conv(x, k, 'same');
end
ripped straight from here.
To comment on your current implementation. wts is the weighting vector, which from the Mathworks, is a 13 point average, with special attention on the first and last point of weightings half of the rest.

How to connect a 3D points with a distance threshold Matlab

I have a vector of 3D points lets say A as shown below,
A=[
-0.240265581092000 0.0500598627544876 1.20715641293013
-0.344503191645519 0.390376667574812 1.15887540716612
-0.0931248606994074 0.267137193112796 1.24244644549763
-0.183530493218807 0.384249186312578 1.14512014134276
-0.0201358671977785 0.404732019283683 1.21816745283019
-0.242108038906952 0.229873488902244 1.24229940627651
-0.391349107031230 0.262170158259873 1.23856838565023
]
what I want to do is to connect 3D points with lines which only have distance less than a specific threshold T. I want to get a list of pairs of points needed to be connected. Such as,
[
( -0.240265581092000 0.0500598627544876 1.20715641293013), (-0.344503191645519 0.390376667574812 1.15887540716612);
(-0.0931248606994074 0.267137193112796 1.24244644549763),(-0.183530493218807 0.384249186312578 1.14512014134276),.....
]
So as shown, I'll have a vector of pairs of points needed to be connected. So if anyone could please advise how this can be done in Matlab.
The following example demonstrates how to accomplish this.
%# Build an example matrix
A = [1 2 3; 0 0 0; 3 1 3; 2 0 2; 0 1 0];
Threshold = 3;
%# Calculate distance between all points
D = pdist2(A, A);
%# Discard any points with distance greater than threshold
D(D > Threshold) = nan;
If you wish to extract an index of all observation pairs that are linked by a distance less than (or equal to) Threshold, as well as the corresponding distance (your question didn't specify what form you wanted the output to take, so I am essentially guessing here), then instead use the following:
%# Obtain a list of linear indices of observations less than or equal to TH
I1 = find(D <= Threshold);
%#Extract the actual distances, as well as the corresponding observation indices from A
[Obs1Index, Obs2Index] = ind2sub(size(D), I1);
DList = [Obs1Index, Obs2Index, D(I1)];
Note, pdist2 uses Euclidean distance by default, but there are other options - see the documentation here.
UPDATE: Based on the OP's comments, the following code will express the output as a K*6 matrix, where K is the number of distance measures less than the threshold value, and the first three columns of each row is the first data point (3 dimensions) and the second three columns of each row is the connected data point.
DList2 = [A(Obs1Index, :), A(Obs2Index, :)];
SECOND UPDATE: I have not made any assumptions on the distance measure in this answer. That is, I'm deliberately using pdist2 in case your distance measure is not symmetric. However, if you are using a symmetric distance measure, then you could probably speed up the run-time by using pdist instead, although my indexing code would need to be adjusted accordingly.
Plot3 and pdist2 can be used to achieve what you want.
D=pdist2(A,A);
T=0.2;
for i=1:7
for j=i+1:7
if D(i,j)<T & D(i,j)~=0
i
j
plot3(A([i j],1),A([i j],2),A([i j],3));
hold on;
fprintf('line is plotted\n');
pause;
end
end
end

Modified linear interpolation with missing data

Imagine a set of data with given x-values (as a column vector) and several y-values combined in a matrix (row vector of column vectors). Some of the values in the matrix are not available:
%% Create the test data
N = 1e2; % Number of x-values
x = 2*sort(rand(N, 1))-1;
Y = [x.^2, x.^3, x.^4, x.^5, x.^6]; % Example values
Y(50:80, 4) = NaN(31, 1); % Some values are not avaiable
Now i have a column vector of new x-values for interpolation.
K = 1e2; % Number of interplolation values
x_i = rand(K, 1);
My goal is to find a fast way to interpolate all y-values for the given x_i values. If there are NaN values in the y-values, I want to use the y-value which is before the missing data. In the example case this would be the data in Y(49, :).
If I use interp1, I get NaN-values and the execution is slow for large x and x_i:
starttime = cputime;
Y_i1 = interp1(x, Y, x_i);
executiontime1 = cputime - starttime
An alternative is interp1q, which is about two times faster.
What is a very fast way which allows my modifications?
Possible ideas:
Do postprocessing of Y_i1 to eliminate NaN-values.
Use a combination of a loop and the find-command to always use the neighbour without interpolation.
Using interp1 with spline interpolation (spline) ignores NaN's.

Matlab - Signal Noise Removal

I have a vector of data, which contains integers in the range -20 20.
Bellow is a plot with the values:
This is a sample of 96 elements from the vector data. The majority of the elements are situated in the interval -2, 2, as can be seen from the above plot.
I want to eliminate the noise from the data. I want to eliminate the low amplitude peaks, and keep the high amplitude peak, namely, peaks like the one at index 74.
Basically, I just want to increase the contrast between the high amplitude peaks and low amplitude peaks, and if it would be possible to eliminate the low amplitude peaks.
Could you please suggest me a way of doing this?
I have tried mapstd function, but the problem is that it also normalizes that high amplitude peak.
I was thinking at using the wavelet transform toolbox, but I don't know exact how to reconstruct the data from the wavelet decomposition coefficients.
Can you recommend me a way of doing this?
One approach to detect outliers is to use the three standard deviation rule. An example:
%# some random data resembling yours
x = randn(100,1);
x(75) = -14;
subplot(211), plot(x)
%# tone down the noisy points
mu = mean(x); sd = std(x); Z = 3;
idx = ( abs(x-mu) > Z*sd ); %# outliers
x(idx) = Z*sd .* sign(x(idx)); %# cap values at 3*STD(X)
subplot(212), plot(x)
EDIT:
It seems I misunderstood the goal here. If you want to do the opposite, maybe something like this instead:
%# some random data resembling yours
x = randn(100,1);
x(75) = -14; x(25) = 20;
subplot(211), plot(x)
%# zero out everything but the high peaks
mu = mean(x); sd = std(x); Z = 3;
x( abs(x-mu) < Z*sd ) = 0;
subplot(212), plot(x)
If it's for demonstrative purposes only, and you're not actually going to be using these scaled values for anything, I sometimes like to increase contrast in the following way:
% your data is in variable 'a'
plot(a.*abs(a)/max(abs(a)))
edit: since we're posting images, here's mine (before/after):
You might try a split window filter. If x is your current sample, the filter would look something like:
k = [L L L L L L 0 0 0 x 0 0 0 R R R R R R]
For each sample x, you average a band of surrounding samples on the left (L) and a band of surrounding samples on the right. If your samples are positive and negative (as yours are) you should take the abs. value first. You then divide the sample x by the average value of these surrounding samples.
y[n] = x[n] / mean(abs(x([L R])))
Each time you do this the peaks are accentuated and the noise is flattened. You can do more than one pass to increase the effect. It is somewhat sensitive to the selection of the widths of these bands, but can work. For example:
Two passes:
What you actually need is some kind of compression to scale your data, that is: values between -2 and 2 are scale by a certain factor and everything else is scaled by another factor. A crude way to accomplish such a thing, is by putting all small values to zero, i.e.
x = randn(1,100)/2; x(50) = 20; x(25) = -15; % just generating some data
threshold = 2;
smallValues = (abs(x) <= threshold);
y = x;
y(smallValues) = 0;
figure;
plot(x,'DisplayName','x'); hold on;
plot(y,'r','DisplayName','y');
legend show;
Please do not that this is a very nonlinear operation (e.g. when you have wanted peaks valued at 2.1 and 1.9, they will produce very different behavior: one will be removed, the other will be kept). So for displaying, this might be all you need, for further processing it might depend on what you are trying to do.
To eliminate the low amplitude peaks, you're going to equate all the low amplitude signal to noise and ignore.
If you have any apriori knowledge, just use it.
if your signal is a, then
a(abs(a)<X) = 0
where X is the max expected size of your noise.
If you want to get fancy, and find this "on the fly" then, use kmeans of 3. It's in the statistics toolbox, here:
http://www.mathworks.com/help/toolbox/stats/kmeans.html
Alternatively, you can use Otsu's method on the absolute values of the data, and use the sign back.
Note, these and every other technique I've seen on this thread is assuming you are doing post processing. If you are doing this processing in real time, things will have to change.