Related
I want to find the corners of objects.
I tried the following code:
Vstats = regionprops(BW2,'Centroid','MajorAxisLength','MinorAxisLength',...
'Orientation');
u = [Vstats.Centroid];
VcX = u(1:2:end);
VcY = u(2:2:end);
[VcY id] = sort(VcY); % sorting regions by vertical position
VcX = VcX(id);
Vstats = Vstats(id); % permute according sort
Bv = Bv(id);
Vori = [Vstats.Orientation];
VRmaj = [Vstats.MajorAxisLength]/2;
VRmin = [Vstats.MinorAxisLength]/2;
% find corners of vertebrae
figure,imshow(BW2)
hold on
% C = corner(VER);
% plot(C(:,1), C(:,2), 'or');
C = cell(size(Bv));
Anterior = zeros(2*length(C),2);
Posterior = zeros(2*length(C),2);
for i = 1:length(C) % for each region
cx = VcX(i); % centroid coordinates
cy = VcY(i);
bx = Bv{i}(:,2); % edge points coordinates
by = Bv{i}(:,1);
ux = bx-cx; % move to the origin
uy = by-cy;
[t, r] = cart2pol(ux,uy); % translate in polar coodinates
t = t - deg2rad(Vori(i)); % unrotate
for k = 1:4 % find corners (look each quadrant)
fi = t( (t>=(k-3)*pi/2) & (t<=(k-2)*pi/2) );
ri = r( (t>=(k-3)*pi/2) & (t<=(k-2)*pi/2) );
[rp, ip] = max(ri); % find farthest point
tc(k) = fi(ip); % save coordinates
rc(k) = rp;
end
[xc,yc] = pol2cart(tc+1*deg2rad(Vori(i)) ,rc); % de-rotate, translate in cartesian
C{i}(:,1) = xc + cx; % return to previous place
C{i}(:,2) = yc + cy;
plot(C{i}([1,4],1),C{i}([1,4],2),'or',C{i}([2,3],1),C{i}([2,3],2),'og')
% save coordinates :
Anterior([2*i-1,2*i],:) = [C{i}([1,4],1), C{i}([1,4],2)];
Posterior([2*i-1,2*i],:) = [C{i}([2,3],1), C{i}([2,3],2)];
end
My input image is :
I got the following output image
The bottommost object in the image is not detected properly. How can I correct the code? It fails to work for a rotated image.
You can get all the points from the image, and use kmeans clustering and partition the points into 8 groups. Once partition is done, you have the points in and and you can pick what ever the points you want.
rgbImage = imread('your image') ;
%% crop out the unwanted white background from the image
grayImage = min(rgbImage, [], 3);
binaryImage = grayImage < 200;
binaryImage = bwareafilt(binaryImage, 1);
[rows, columns] = find(binaryImage);
row1 = min(rows);
row2 = max(rows);
col1 = min(columns);
col2 = max(columns);
% Crop
croppedImage = rgbImage(row1:row2, col1:col2, :);
I = rgb2gray(croppedImage) ;
%% Get the white regions
[y,x,val] = find(I) ;
%5 use kmeans clustering
[idx,C] = kmeans([x,y],8) ;
%%
figure
imshow(I) ;
hold on
for i = 1:8
xi = x(idx==i) ; yi = y(idx==i) ;
id1=convhull(xi,yi) ;
coor = [xi(id1) yi(id1)] ;
[id,c] = kmeans(coor,4) ;
plot(coor(:,1),coor(:,2),'r','linewidth',3) ;
plot(c(:,1),c(:,2),'*b')
end
Now we are able to capture the regions..the boundary/convex hull points are in hand. You can do what ever math you want with the points.
Did you solve the problem? I Looked into it and it seems that the rotation given by 'regionprops' seems to be off. To fix that I've prepared a quick solution: I've dilated the image to close the gaps, found 4 most distant peaks of each spine, and then validated if a peak is on the left, or on the right of the centerline (that I have obtained by extrapolating form sorted centroids). This method seems to work for this particular problem.
BW2 = rgb2gray(Image);
BW2 = imbinarize(BW2);
%dilate and erode will help to remove extra features of the vertebra
se = strel('disk',4,4);
BW2_dilate = imdilate(BW2,se);
BW2_erode = imerode(BW2_dilate,se);
sb = bwboundaries(BW2_erode);
figure
imshow(BW2)
hold on
centerLine = [];
corners = [];
for bone = 1:length(sb)
x0 = sb{bone}(:,2) - mean(sb{bone}(:,2));
y0 = sb{bone}(:,1) - mean(sb{bone}(:,1));
%save the position of the centroid
centerLine = [centerLine; [mean(sb{bone}(:,1)) mean(sb{bone}(:,2))]];
[th0,rho0] = cart2pol(x0,y0);
%make sure that the indexing starts at the dip, not at the corner
lowest_val = find(rho0==min(rho0));
rho1 = [rho0(lowest_val:end); rho0(1:lowest_val-1)];
th00 = [th0(lowest_val:end); th0(1:lowest_val-1)];
y1 = [y0(lowest_val:end); y0(1:lowest_val-1)];
x1 = [x0(lowest_val:end); x0(1:lowest_val-1)];
%detect corners, using smooth data to remove noise
[pks,locs] = findpeaks(smooth(rho1));
[pksS,idS] = sort(pks,'descend');
%4 most pronounced peaks are where the corners are
edgesFndCx = x1(locs(idS(1:4)));
edgesFndCy = y1(locs(idS(1:4)));
edgesFndCx = edgesFndCx + mean(sb{bone}(:,2));
edgesFndCy = edgesFndCy + mean(sb{bone}(:,1));
corners{bone} = [edgesFndCy edgesFndCx];
end
[~,idCL] = sort(centerLine(:,1),'descend');
centerLine = centerLine(idCL,:);
%extrapolate the spine centerline
yDatExt= 1:size(BW2_erode,1);
extrpLine = interp1(centerLine(:,1),centerLine(:,2),yDatExt,'spline','extrap');
plot(centerLine(:,2),centerLine(:,1),'r')
plot(extrpLine,yDatExt,'r')
%find edges to the left, and to the right of the centerline
for bone = 1:length(corners)
x0 = corners{bone}(:,2);
y0 = corners{bone}(:,1);
for crn = 1:4
xCompare = extrpLine(y0(crn));
if x0(crn) < xCompare
plot(x0(crn),y0(crn),'go','LineWidth',2)
else
plot(x0(crn),y0(crn),'ro','LineWidth',2)
end
end
end
Solution
I want to find Orientation, MajorAxisLengthand MinorAxisLength of contour which is plotted with below code.
clear
[x1 , x2] = meshgrid(linspace(-10,10,100),linspace(-10,10,100));
mu = [1,3];
sigm = [2,0;0,2];
xx_size = length(mu);
tem_matrix = ones(size(x1));
x_mesh= cell(1,xx_size);
for i = 1 : xx_size
x_mesh{i} = tem_matrix * mu(i);
end
x_mesh= {x1,x2};
temp_mesh = [];
for i = 1 : xx_size
temp_mesh = [temp_mesh x_mesh{i}(:)];
end
Z = mvnpdf(temp_mesh,mu,sigm);
z_plat = reshape(Z,size(x1));
figure;contour(x1, x2, z_plat,3, 'LineWidth', 2,'color','m');
% regionprops(z_plat,'Centroid','Orientation','MajorAxisLength','MinorAxisLength');
In my opinion, I may have to use regionprops command but I don't know how to do this. I want to find direction of axis of contour and plot something like this
How can I do this task? Thanks very much for your help
Rather than trying to process the graphical output of contour, I would instead recommend using contourc to compute the ContourMatrix and then use the x/y points to estimate the major and minor axes lengths as well as the orientation (for this I used this file exchange submission)
That would look something like the following. Note that I have modified the inputs to contourc as the first two inputs should be the vector form and not the output of meshgrid.
% Compute the three contours for your data
contourmatrix = contourc(linspace(-10,10,100), linspace(-10,10,100), z_plat, 3);
% Create a "pointer" to keep track of where we are in the output
start = 1;
count = 1;
% Now loop through each contour
while start < size(contourmatrix, 2)
value = contourmatrix(1, start);
nPoints = contourmatrix(2, start);
contour_points = contourmatrix(:, start + (1:nPoints));
% Now fit an ellipse using the file exchange
ellipsedata(count) = fit_ellipse(contour_points(1,:), contour_points(2,:));
% Increment the start pointer
start = start + nPoints + 1;
count = count + 1;
end
orientations = [ellipsedata.phi];
% 0 0 0
major_length = [ellipsedata.long_axis];
% 4.7175 3.3380 2.1539
minor_length = [ellipsedata.short_axis];
% 4.7172 3.3378 2.1532
As you can see, the contours are actually basically circles and therefore the orientation is zero and the major and minor axis lengths are almost equal. The reason that they look like ellipses in your post is because your x and y axes are scaled differently. To fix this, you can call axis equal
figure;contour(x1, x2, z_plat,3, 'LineWidth', 2,'color','m');
axis equal
Thank you #Suever. It help me to do my idea.
I add some line to code:
clear
[X1 , X2] = meshgrid(linspace(-10,10,100),linspace(-10,10,100));
mu = [-1,0];
a = [3,2;1,4];
a = a * a';
sigm = a;
xx_size = length(mu);
tem_matrix = ones(size(X1));
x_mesh= cell(1,xx_size);
for i = 1 : xx_size
x_mesh{i} = tem_matrix * mu(i);
end
x_mesh= {X1,X2};
temp_mesh = [];
for i = 1 : xx_size
temp_mesh = [temp_mesh x_mesh{i}(:)];
end
Z = mvnpdf(temp_mesh,mu,sigm);
z_plat = reshape(Z,size(X1));
figure;contour(X1, X2, z_plat,3, 'LineWidth', 2,'color','m');
hold on;
% Compute the three contours for your data
contourmatrix = contourc(linspace(-10,10,100), linspace(-10,10,100), z_plat, 3);
% Create a "pointer" to keep track of where we are in the output
start = 1;
count = 1;
% Now loop through each contour
while start < size(contourmatrix, 2)
value = contourmatrix(1, start);
nPoints = contourmatrix(2, start);
contour_points = contourmatrix(:, start + (1:nPoints));
% Now fit an ellipse using the file exchange
ellipsedata(count) = fit_ellipse(contour_points(1,:), contour_points(2,:));
% Increment the start pointer
start = start + nPoints + 1;
count = count + 1;
end
orientations = [ellipsedata.phi];
major_length = [ellipsedata.long_axis];
minor_length = [ellipsedata.short_axis];
tet = orientations(1);
x1 = mu(1);
y1 = mu(2);
a = sin(tet) * sqrt(major_length(1));
b = cos(tet) * sqrt(major_length(1));
x2 = x1 + a;
y2 = y1 + b;
line([x1, x2], [y1, y2],'linewidth',2);
tet = ( pi/2 + orientations(1) );
a = sin(tet) * sqrt(minor_length(1));
b = cos(tet) * sqrt(minor_length(1));
x2 = x1 + a;
y2 = y1 + b;
line([x1, x2], [y1, y2],'linewidth',2);
I have images of rectangles or deformed rectangles with rounded corners, like this:
or this:
is there a way to make the corners squared with matlab?
And then how can i get the coordinates of those new corners?
Thank you
Explanation
This problem is similar to the following question. My answer will be somehow similar to my answer there, with the relevant modifications.
we want to find the parallelogram corners which fits the most to the given shape.
The solution can be found by optimization, as follows:
find an initial guess for the 4 corners of the shape. This can be done by finding the boundary points with the highest curvature, and use kmean clustering to cluster them into 4 groups.
create a parallelogram given these 4 corners, by drawing a line between each pair of corresponding corners.
find the corners which optimize the Jaccard coefficient of the boundary image and the generated parallelogram map.
The optimization will done locally on each corner, in order to spare time.
Results
Initial corner guess (corners are marked in blue)
final results:
Code
main script
%reads image and binarize it
I = rgb2gray(imread('eA4ci.jpg')) > 50;
%finds boundry of largerst connected component
boundries = bwboundaries(I,8);
numPixels = cellfun(#length,boundries);
[~,idx] = max(numPixels);
B = boundries{idx};
%finds best 4 corners
[ corners ] = optimizeCorners(B);
%generate line mask given these corners, fills the result
linesMask = drawLines(size(I),corners,corners([2:4,1],:));
rectMask = imfill(linesMask,'holes');
%remove biggest CC from image, adds linesMask instead
CC = bwconncomp(I,8);
numPixels = cellfun(#numel,CC.PixelIdxList);
[~,idx] = max(numPixels);
res = I;
res(CC.PixelIdxList{idx}) = 0;
res = res | rectMask;
optimize corners function:
function [ corners] = optimizeCorners(xy)
%finds the corners which fits the most for this set of points
Y = xy(:,1);
X = xy(:,2);
%initial corners guess
corners = getInitialCornersGuess(xy);
boundriesIm = zeros(max(Y)+20,max(X)+20);
boundriesIm(sub2ind(size(boundriesIm),xy(:,1),xy(:,2))) = 1;
%R represents the search radius
R = 7;
%continue optimizing as long as there is no change in the final result
unchangedIterations = 0;
while unchangedIterations<4
for ii=1:4
%optimize corner ii
currentCorner = corners(ii,:);
bestCorner = currentCorner;
bestRes = calcEnergy(boundriesIm,corners);
cornersToEvaluate = corners;
for yy=currentCorner(1)-R:currentCorner(1)+R
for xx=currentCorner(2)-R:currentCorner(2)+R
cornersToEvaluate(ii,:) = [yy,xx];
res = calcEnergy(boundriesIm,cornersToEvaluate);
if res > bestRes
bestRes = res;
bestCorner = [yy,xx];
end
end
end
if isequal(bestCorner,currentCorner)
unchangedIterations = unchangedIterations + 1;
else
unchangedIterations = 0;
corners(ii,:) = bestCorner;
end
end
end
end
function res = calcEnergy(boundriesIm,corners)
%calculates the score of the corners list, given the boundries image.
%the result is acutally the jaccard index of the boundries map and the
%lines map
linesMask = drawLines(size(boundriesIm),corners,corners([2:4,1],:));
res = sum(sum(linesMask&boundriesIm)) / sum(sum(linesMask|boundriesIm));
end
get initial corners function:
function corners = getInitialCornersGuess(boundryPnts)
%calculates an initial guess for the 4 corners
%finds corners by performing kmeans on largest curvature pixels
[curvatureArr] = calcCurvature(boundryPnts, 5);
highCurv = boundryPnts(curvatureArr>0.3,:);
[~,C] = kmeans([highCurv(:,1),highCurv(:,2)],4);
%sorts the corners from top to bottom - preprocessing stage
C = int16(C);
corners = zeros(size(C));
%top left corners
topLeftInd = find(sum(C,2)==min(sum(C,2)));
corners(1,:) = C(topLeftInd,:);
%bottom right corners
bottomRightInd = find(sum(C,2)==max(sum(C,2)));
corners(3,:) = C(bottomRightInd,:);
%top right and bottom left corners
C([topLeftInd,bottomRightInd],:) = [];
topRightInd = find(C(:,2)==max(C(:,2)));
corners(4,:) = C(topRightInd,:);
bottomLeftInd = find(C(:,2)==min(C(:,2)));
corners(2,:) = C(bottomLeftInd,:);
end
function [curvatureArr] = calcCurvature(xy, halfWinSize)
%calculate the curvature of a list of points (xy) given a window size
%curvature calculation
curvatureArr = zeros(size(xy,1),1);
for t=1:halfWinSize
y = xy(t:halfWinSize:end,1);
x = xy(t:halfWinSize:end,2);
dx = gradient(x);
ddx = gradient(dx);
dy = gradient(y);
ddy = gradient(dy);
num = abs(dx .* ddy - ddx .* dy) + 0.000001;
denom = dx .* dx + dy .* dy + 0.000001;
denom = sqrt(denom);
denom = denom .* denom .* denom;
curvature = num ./ denom;
%normalizing
if(max(curvature) > 0)
curvature = curvature / max(curvature);
end
curvatureArr(t:halfWinSize:end) = curvature;
end
end
draw lines function:
function mask = drawLines(imgSize, P1, P2)
%generates a mask with lines, determine by P1 and P2 points
mask = zeros(imgSize);
P1 = double(P1);
P2 = double(P2);
for ii=1:size(P1,1)
x1 = P1(ii,2); y1 = P1(ii,1);
x2 = P2(ii,2); y2 = P2(ii,1);
% Distance (in pixels) between the two endpoints
nPoints = ceil(sqrt((x2 - x1).^2 + (y2 - y1).^2));
% Determine x and y locations along the line
xvalues = round(linspace(x1, x2, nPoints));
yvalues = round(linspace(y1, y2, nPoints));
% Replace the relevant values within the mask
mask(sub2ind(size(mask), yvalues, xvalues)) = 1;
end
I setup and meshed a domain using Matlab's PDE toolbox. Along the boundary, is there someway to get the length of each element of the mesh? And the flux in the normal direction? (the bc are Dirichlet)
Edit:
See example code
RMax = 20;
RL = 1;
RU = 0.5;
HN = 5;
HL = 2;
HTT = 3;
HU = 1.5;
VL = -150;
p = [RL,0;RL,HN;0,HN+HL;0,HN+HL+HTT;RU,HN+HL+HTT+HU;RMax,HN+HL+HTT+HU;RMax,0];
t = [1;1;0;1;1;0;0];
v = [VL;VL;0;0;0;0;0];
dx = 0.5;
dy = 0.5;
bc = cell(size(t));
for i = 1:length(t)
if t(i) == 0
bc{i} = {'u', v(i)};
elseif t(i) == 1
bc{i} = {'g', v(i), 'q', 1};
else
error('Unrecognized boundary condition type.')
end
end
model = createpde;
gd = [2; size(p,1); p(:,1) ; p(:,2)];
ns = char('domain')';
sf = 'domain';
g = decsg(gd,sf,ns);
geometryFromEdges(model,g);
generateMesh(model, 'Hmax', min([dx,dy])/3, 'MesherVersion','R2013a');
for i = 1:size(bc,1)
applyBoundaryCondition(model, 'Edge', i, bc{i}{:});
end
u = assempde( model , 'x' , 0 , 0 );
pdemesh(model)
Edit: 2015-12-17 18:54 GMT
There are 2 points in the e shown at 1 and 2 in the figure below. I want to know the coordinate of 3 so I know which direction is into the domain.
You can answer your first question by using meshToPet to convert to [P,E,T] form:
[p,e,t] = meshToPet(model.Mesh);
x1 = p(1,e(1,:)); % x-coordinates of first point in each mesh edge
x2 = p(1,e(2,:)); % x-coordinates of second point in each mesh edge
y1 = p(2,e(1,:)); % y-coordinates of first point in each mesh edge
y2 = p(2,e(2,:)); % y-coordinates of second point in each mesh edge
% Plot first points of mesh edge
plot(x1,y1,'b.-',x1(1),y1(1),'go',x1(end),y1(end),'ro');
% Euclidean distance between first and second point in each edge
d = sqrt((x1-x2).^2+(y1-y2).^2);
I'm assuming you just want the lengths of the mesh edge/boundary. You can use similar methods to get the lengths of every single triangle using the t matrix.
As far as flux goes, there's pdecgrad. I think the following may work:
...
c = 'x';
u = assempde(model, c, 0, 0);
[p,e,t] = meshToPet(model.Mesh);
[cgxu,cgyu] = pdecgrad(p,t,c,u);
I am working on rotating image manually in Matlab. Each time I run my code with a different image the previous images which are rotated are shown in the Figure. I couldn't figure it out. Any help would be appreciable.
The code is here:
[screenshot]
im1 = imread('gradient.jpg');
[h, w, p] = size(im1);
theta = pi/12;
hh = round( h*cos(theta) + w*abs(sin(theta))); %Round to nearest integer
ww = round( w*cos(theta) + h*abs(sin(theta))); %Round to nearest integer
R = [cos(theta) -sin(theta); sin(theta) cos(theta)];
T = [w/2; h/2];
RT = [inv(R) T; 0 0 1];
for z = 1:p
for x = 1:ww
for y = 1:hh
% Using matrix multiplication
i = zeros(3,1);
i = RT*[x-ww/2; y-hh/2; 1];
%% Nearest Neighbour
i = round(i);
if i(1)>0 && i(2)>0 && i(1)<=w && i(2)<=h
im2(y,x,z) = im1(i(2),i(1),z);
end
end
end
end
x=1:ww;
y=1:hh;
[X, Y] = meshgrid(x,y); % Generate X and Y arrays for 3-D plots
orig_pos = [X(:)' ; Y(:)' ; ones(1,numel(X))]; % Number of elements in array or subscripted array expression
orig_pos_2 = [X(:)'-(ww/2) ; Y(:)'-(hh/2) ; ones(1,numel(X))];
new_pos = round(RT*orig_pos_2); % Round to nearest neighbour
% Check if new positions fall from map:
valid_pos = new_pos(1,:)>=1 & new_pos(1,:)<=w & new_pos(2,:)>=1 & new_pos(2,:)<=h;
orig_pos = orig_pos(:,valid_pos);
new_pos = new_pos(:,valid_pos);
siz = size(im1);
siz2 = size(im2);
% Expand the 2D indices to include the third dimension.
ind_orig_pos = sub2ind(siz2,orig_pos(2*ones(p,1),:),orig_pos(ones(p,1),:), (1:p)'*ones(1,length(orig_pos)));
ind_new_pos = sub2ind(siz, new_pos(2*ones(p,1),:), new_pos(ones(p,1),:), (1:p)'*ones(1,length(new_pos)));
im2(ind_orig_pos) = im1(ind_new_pos);
imshow(im2);
There is a problem with the initialization of im2, or rather, the lack of it. im2 is created in the section shown below:
if i(1)>0 && i(2)>0 && i(1)<=w && i(2)<=h
im2(y,x,z) = im1(i(2),i(1),z);
end
If im2 exists before this code is run and its width or height is larger than the image you are generating the new image will only overwrite the top left corner of your existing im2. Try initializing im2 by adding adding
im2 = zeros(hh, ww, p);
before
for z = 1:p
for x = 1:ww
for y = 1:hh
...
As a bonus it might make your code a little faster since Matlab won't have to resize im2 as it grows in the loop.