Where can I find documentation of RPM macro expansion? - macros

I'm working with some RPM spec files and .rpmmacros which are failing with a newer version or build of RPM than they were intended to be used with, and I'm trying to make sense of them, but I can't find any good documentation on how RPM expands parameterized macros. In particular, I'm unclear whether %% inside the macro body, which presumably expands to a single %, gets expanded again after the first macro is expanded, or remains as a literal % sign. But what I'd really like is some good documentation on the whole RPM macro system, which I'm unfamiliar with (I inherited the mess from somebody else and wouldn't be using RPM by choice at all). Any pointers?

if you run
rpm --showrc
you get the value of every macro currently known to rpm.
Among that output, lookout for the line stating with macrofiles, it contains a list of every macro file rpm evaluates to get to the values.

Related

Difference between `uiop/package:define-package` and `defpackage`?

In Common Lisp with ASDF what is the difference between the define-package in uiop/package and the defpackage macro?
UIOP's one has more clauses.
https://common-lisp.net/project/asdf/uiop.html#UIOP_002fPACKAGE
define-package supports the following keywords: use, shadow, shadowing-import-from, import-from, export, intern -- as per cl:defpackage.
those are the same ones. But the rest of the docstring introduces more of them: recycle, mix, reexport…
I have used reexport which makes the following easier: you don't want to fully use package A (for example, Alexandria). You want to import a couple symbols (easy, with import-from), and you also want to export them (easy too, with export). But in doing so, you had to write the symbols twice. reexport saves duplication.
I heard some complains that defpackage would fail to reload a package in some situations, and define-package worked fine, but I didn't encounter this situation.
(edit): another difference: let's say you ":use" a package in your defpackage definition. Now you erase that line and you compile the package definition again. Your Lisp gives you a warning, telling that your package "also uses the following packages" and lists the one you removed from the definition. You removed the line, but the package still "uses" what you wanted to remove. You can check with (describe (find-package :my-package)).
Do the same with UIOP's define-package: you don't have warnings and your package doesn't "use" the one you removed from the definition anymore, as expected.

How could I run a single line of code (not script) from command prompt?

Simple question here, just can't seem to pass it google in a way it can understand.
Say I wanted to execute a line of actual programming code (c++ or java or python... etc) like SetCursorPos or printf from the command prompt command line. I vaguely imagine I would have to invoke the compiler and pass the command to it like a parameter, where from it would then be converted into machine language and passed to... where exactly?
Okay so that was kind of two questions.
How to run actual code from the command line and
what exactly is happening when a fully compiled program, or converted line of code (presuming these are essentially binary containers at that point), is executed?
Question one takes priority obviously. Unfortunately, I can not find any documentation on it, just a bunch of stuff vaguely related to it.
How to run actual code from the command line
Without delving into the vast amounts of blurriness between them, there are two major categories of language implementations: interpreters and compilers.
With many interpreters (or implementations with implicit compilation, such as V8 JavaScript's jit compiler, or pretty much anything with a repl), running a single line from the command line should be fairly trivial. CPython (the standard implementation of Python) has the -c command option:
$ python -c 'print("Hello, world!")'
Hello, world!
Language implementations with explicit compilation steps will tend to be decidedly less simple. In particular, the compiler would need to either accept source either from directly out of the argument list, or from standard input (via piping or redirection). On the output side, your compiler would have to support immediately executing that program, or outputting it to standard out, so that an operating system feature (if it exists) can execute it from a pipe.
To my knowledge, most explicit compilers are not designed with such usage in mind. In such cases, your best bet is to see if there is a REPL available for the language in question, preferably one as compatible with your compiler as possible, or to create (or find) a wrapper that makes it look like your language has a REPL. The wrapper would:
Accept input along the lines of CPython above.
Create a temporary source file behind the scenes with the code to be run and any necessary boilerplate.
Pass that file to the compiler.
Automatically run the resulting executable.
Delete the source file and executable. These may be cleaned up by the operating system later instead, if they're in a temp directory.
From the point of view of the user, this should look pretty similar to the CPython example, as they wouldn't have to interact with or see the compiler or temporary files.

Why is "package" keyword sometimes separated by a comment from the package name?

Analyzing sources of CPAN modules I can see something like this:
...
package # hide from PAUSE
Try::Tiny::ScopeGuard;
...
Obviously, it's taken from Try::Tiny, but I have seen this kind of comments between package keyword and package identifier in other modules too.
Why this procedure is used? What is its goal and what benefits does it have?
It is indeed a hack to hide a package from PAUSE's indexer.
When a distribution is uploaded to PAUSE, the indexer will examine each file in the upload, looking for the names of packages that are included in the distribution. Any indexed packages can show up in CPAN search results.
There are many reasons for not wanting the indexer to discover your packages. Your distribution may have many small or insignificant packages that would clutter up the search results for your module. You may have packages defined in your t (test) directory or some other non-standard directory that are not meant to be installed as part of the distribution. Your distribution may include files from a completely different distribution (that somebody else wrote).
The hack works because the indexer strictly looks for the keyword package and an expression that looks like a package name on the same line.
Nowadays, you can include a META.yml file with your distribution. The PAUSE indexer will look for and respect a no_index specification in this file. But this is a relatively new capability of the indexer so older modules and old-timer CPAN contributors will still use the line break hack.
Here's an example of a no_index spec from Forks::Super
no_index:
directory:
- t
- inc
package:
- Sys::CpuAffinity
- Signals::XSIG
- Signals::XSIG::Default
- Signals::XSIG::TieArray56
Sys::CpuAffinity and Signals::XSIG are separate distributions that are also packaged with Forks::Super. Some of the test scripts contain package declarations (e.g., Arbitrary::Test::Package) that shouldn't be indexed.
Okay, here's another shot at this phenomenon ... I've been whacky-hacking Perl for a dozen years and I've rarely seen this packy hack and possibly simply ignored and never bothered to investigate. One thing seems clear, though. There's some hackish processing going on at PAUSE that's been crafted in the good ol' Perl'n'UNIX school of thought that without the shadow of a doubt involves line-oriented text parsing, so they parse those Perl files, possibly even using grep, but rather perl itself, who knows, to extract package names and then kick of some procedure or get some stats or whatnot. And to trip up this procedure and hack around its ways the author splits the package declaration in two lines so the hacky packy grep job doesn't have a clue that there's a package declared right under its nose and the programmer is happy about his hacky skills and the PAUSE stats or whatever it is they're cobbling together are as they should be. Does that make sense?

Which values are allowed for environment variable MAKE_MODE when using GNU make?

I usually have an environment setting for MAKE_MODE (Windows XP, using GNU make, both under Cygwin and native)
set MAKE_MODE=UNIX
I now found differences between my build server (which has no MAKE_MODE defined) and a local build. This may be something completely different, but it got me wondering what other values I could specify for MAKE_MODE.
I think I know that MAKE_MODE=UNIX is suppose to tell GNU make to use /bin/sh - if it finds it - , but I quickly checked the GNU make manual and couldn't find a description. A google search only told me what I already know, but doesn't give a valid alternative.
Is the only alternative to not define the variable? Does it have influence at all when using CMD.exe and a native version of GNU make?
EDIT: So far I have found references for the values 'unix', 'win32', 'null' and undefined, but no explanations, and no specifications. But a look at the source code for GNU make 3.82 shows not a single occurrence of the string "MAKE_MODE", so GNUmake itself apparently doesn't change its behavior when this environment variable is set or not.
EDIT2: I checked the source code for GNU make for MinGW, and again found nothing. Maybe it's CygWin specific?
EDIT3: I found a reference that it might be property of an old version of GNU make, so I checked version 3.75. No luck, the string MAKE_MODE does not appear in the source code at all. The next step really must be the Cygwin version of GNU make. I know from 10 years ago that the Cygwin port in those days was not integrated in the regular source tree.
I found an ancient mailing list entry on the Cygwin site, explaining the basic operational effect of MAKE_MODE. This definitely indicates that the variable has to do with the Cygwin implementation of GNU make.
I'll dig around in the source code, and add to this answer when I find more details.
UPDATE: In a more recent post by maintainer Christopher Faylor I found the following update for GNU make version 3.81:
Note that the --win32 command line option and "MAKE_MODE" environment
variable are no longer supported in Cygwin's make. If you need to use a
Makefile which contains MS-DOS path names, then please use a MinGW
version of make.
I've not really found the values allowed for MAKE_MODE, but it's not any more necessary or supported in most recent versions of GNU make for Cygwin, and it was used for supporting DOS filenames in Cygwin's make.
And if you really want to know the set of allowed values, look in the source for Cygwin's make version before 3.81-1. I guess the only useful value was unix, all others will have meant the same.
Case closed? There's still not many views here...

What is the purpose of the Emacs function (eval-and-compile...)?

I can read the documentation, so I'm not asking for a cut-and-paste of that.
I'm trying to understand the motivation for this function.
When would I want to use it?
The documentation in the Emacs lisp manual does have some example situations that seem to answer your question (as opposed to the doc string).
From looking at the Emacs source code, eval-and-compile is used to quiet the compiler, to make macros/functions available during compilation (and evaluation), or to make feature/version specific variants of macros/functions available during compilation.
One usage I found helpful to see was in ezimage.el. In there, an if statement was put inside the eval-and-compile to conditionally define macros depending on whether the package was compiled/eval'ed in Emacs or XEmacs, and additionally whether a particular feature was present. By wrapping that conditional inside the eval-and-compile you enable the appropriate macro usage during compilation. A similar situation can be found in mwheel.el.
Similarly, if you want to define a function via fset and have it available during compilation, you need to have the call to fset wrapped with eval-and-compile because otherwise the symbol -> function association isn't available until the file is evaluated (because compilation of a call to fset just optimizes the assignment, it doesn't actually do the assignment). Why would you want this assignment during compilation? To quiet the compiler. Note: this is just my re-wording of what is in the elisp documentation.
I did notice a lot of uses in Emacs code which just wrapped calls to require, which sounds redundant when you read the documentation. I'm at a loss as to how to explain those.