Racket endless background expansion using syntax-parse - macros

So I'm trying to write a macro to give class declarations some syntax I like better.
(define-syntax (defclass stx)
(syntax-parse stx #:literals ((*...* ...))
;=============================
[(defclass (name:id inits ... rest:id *...*) opts ...)
#'(defclass (name inits ... rest *...*) (opts ...))]
[(defclass (name:id inits ... rest:id *...*) (opts ...))
#'(defclass (name inits ... rest *...*) object% ((super-new) opts ...))]
[(defclass (name:id inits ... rest:id *...*) super (opts ...))
#'(define name (class super (init inits ...) (init-rest rest) opts ...))]
[(defclass (name:id inits ... rest:id *...*) super supers ... (opts ...))
#'(define name (class* super (supers ...) (init inits ...) (init-rest rest) opts ...))]
;=============================
[(defclass (name:id inits ...) opts ...)
#'(defclass (name inits ...) (opts ...))]
[(defclass (name:id inits ...) (opts ...))
#'(defclass (name inits ...) object% ((super-new) opts ...))]
[(defclass (name:id inits ...) super (opts ...))
#'(define name (class super (init inits ...) opts ...))]
[(defclass (name:id inits ...) super supers ... (opts ...))
#'(define name (class* super (supers ...) (init inits ...) opts ...))]
;=============================
[(defclass name:id opts ...)
#'(defclass name (opts ...))]
[(defclass name:id (opts ...))
#'(defclass name object% ((super-new) opts ...))]
[(defclass name:id super (opts ...))
#'(define name (class super opts ...))]
[(defclass name:id super supers ... (opts ...))
#'(define name (class* super (supers ...) opts ...))]
;=============================
))
So (defclass (foo bar baz) (method X ...)) ultimately transforms to (define foo (class object% (super-new) (init bar baz) (method x ...))).
The problem is that DrRacket's background expansion seems to be expanding without end. Worse yet, when DrRacket tells me that it's been expanding for a very long time and would I like to see the steps so far, clicking the button to show the steps does not show the steps. I'm testing it with the line (defclass (char atts inventory level-atts)), which should generate (define char (class object% (init atts inventory level-atts) (super-new))), but as I said I'm unable to inspect the expansion process and see what's actually happening. I've also tried changing all the #'(defclass ...) templates for syntax-parse into just (defclass ...), in case syntax-parse doesn't expand the forms it returns, but then I run into the inability to refer to name, inits, etc, because they're not in a template.

The simplest way to get "Background expansion pending..." is probably this:
(define-syntax-rule (infinite)
(infinite))
(infinite)
infinite expands to infinite which expands to infinite... you get the idea.
Your defclass has many patterns that expand into defclass. One of the patterns must expand to itself.
There are a half dozen patterns here that expand to defclass. At a glance, I can't spot which one(s) have this problem. If you can't, either, I suggest working up step by step: Comment out all of the patterns. Next, start with the most-specific -- the "already most-expanded", which do not expand into defclass. Add them in one by one, with an example usage for each, until you hit the infinite expansion again. Then look hard at the pattern until you spot it.
(From speaking with a few of them, I get the impression that even people who are expert at Scheme and Racket macros work things out step by step. Non-trivial macros are not something where the full structure usually emerges from brain to finger correctly in one big blurp.)

Related

Different initialization, Common Lisp

Can I mimic different constructors in CL?
To elaborate -- in, say, C++, I can make different constructors for the same class depending on what arguments are passed.
Can I do this with CLOS? Probably having different initialize-instances key args or something like that?
One approach to doing this is to have a secondary initialization method:
(defclass myclass ()
((s1 :initarg :s1 :accessor s1)))
(defgeneric initialize-myclass (dispatch class &key))
(defmethod initialize-instance :after ((c myclass) &rest args &key (dispatch 'normal)
&allow-other-keys)
(apply #'initialize-myclass dispatch c args))
(defmethod initialize-myclass ((dispatch (eql 'normal)) (class myclass) &key))
(defmethod initialize-myclass ((dispatch (eql 'special)) (class myclass)
&key x &allow-other-keys)
(print x))
Now you can say
(make-instance 'myclass :dispatch 'special ...)
For instance. Note this is not necessarily a good way of doing it, but it does work, and I've used it. Note also I may have got the keyword-argument defaulting wrong: I never remember where you need to say &allow-other-keys & where you don't, and where the right place to say it is.
The basic problem here is that we want an additional thing to dispatch on: initialize-instance can dispatch on the class of the object being defined, but that's all it can dispatch on. In particular it can't dispatch on one of its keyword arguments because you can't do that in CLOS. But we can take one of its keyword arguments (dispatch here) and 'bless' it as a positional argument to a secondary initialization generic function, which then can dispatch on that argument.
Well, initialize-instance is typically defined as an :after method to run some sort of post-processing once the instance has been initialized through make-instance. What you might do is use parametric polymorphism (dispatching on parameters) and have different methods initialize your instance based on the parameters supplied. Consider the following example:
CL-USER> (defclass my-class ()
((a :initarg :a
:accessor my-class-a)))
#<STANDARD-CLASS COMMON-LISP-USER::MY-CLASS>
CL-USER> (defmethod make-my-class ((a number))
(make-instance 'my-class :a (format nil "Look ma, a number ~a" a)))
#<STANDARD-METHOD COMMON-LISP-USER::MAKE-MY-CLASS (NUMBER) {1016445273}>
CL-USER> (defmethod make-my-class ((a string))
(make-instance 'my-class :a (format nil "Look ma, a string ~a" a)))
#<STANDARD-METHOD COMMON-LISP-USER::MAKE-MY-CLASS (STRING) {10166065C3}>
CL-USER> (make-my-class 10)
#<MY-CLASS {1016690E33}>
CL-USER> (my-class-a *)
"Look ma, a number 10"
CL-USER> (make-my-class "foo")
#<MY-CLASS {1016694CD3}>
CL-USER> (my-class-a *)
"Look ma, a string foo"
As you can see, the method make-my-class dispatches on its argument and initializes my-class accordingly.

Transforming a list of symbols to a list of identifiers to be used in a macro

Consider the scenario where I would like to specify a very simplistic actor language using Racket macros. An actor is defined by a behaviour that defines some local state and message handlers that implement some logic. The body of a message handler can use both the formal parameters of the message, as well as the state variables. An example is implemented in the code below.
There is quite a lot of context in the code which is probably not even necessary. However, I have included it regardless in order to provide a running example, and the fact that I need to use syntax-parametrize may complicate the solution. The special point of interest is the with-syntax clause in the MESSAGE macro, where I require the (local-state-variable ...) pattern to match a list of identifiers, currently #'local-state-variables which is a list of symbols (bound by syntax-parameterize in the ACTOR macro), and thus does not match. So far I have not been able to find the solution, although it does not seem like it should be shockingly difficult. Am I missing something obvious?
#lang racket
(require (for-syntax syntax/parse))
(require racket/stxparam)
(define LOCAL_STATE
(lambda (stx)
(raise-syntax-error 'LOCAL_STATE "should only be used inside an actor" stx)))
; Define some syntax classes because abstractions are nice
(begin-for-syntax
(define-syntax-class actor-local-state
#:description "actor local state"
#:literals (LOCAL_STATE)
(pattern (LOCAL_STATE state-variable:id ...)))
(define-syntax-class message-pattern
#:description "actor message pattern"
(pattern (identifier:id argument:id ...))))
(define-syntax-parameter local-state-variables
(lambda (stx)
(raise-syntax-error 'local-state-variables "reserved keyword for actors" stx)))
(define-syntax (MESSAGE stx)
(syntax-parse stx
[(_ pattern:message-pattern body:expr ...+)
; Currently there is a "binding match failed" error on the following line, but replacing #'local-state-variables with #'(a b) (a list of identifiers) needless to say works.
(with-syntax ([(local-state-variable ...) #'local-state-variables])
; For simplicity just display the state variables - this is normally where some magic happens
#'(display '(local-state-variable ...)))]))
(define-syntax (ACTOR stx)
(syntax-parse stx
[(_ state:actor-local-state handler:expr ...+)
#'(syntax-parameterize
([local-state-variables '(state.state-variable ...)])
; For the sake of simplicity, an actor is currently a list of message handlers
(list handler ...))]))
; in this proof-of-concept code this should print (a b)
(define behaviour
(ACTOR (LOCAL_STATE a b)
(MESSAGE (add x y) (+ a b x y))))
Use syntax-parameter-value. Here's an example of using syntax parameters to manage lists of variables:
;; vars : syntax parameter of (Listof Identifier)
(define-syntax-parameter vars null)
;; with-vars: like let, but set vars
(define-syntax (with-vars stx)
(syntax-parse stx
[(_ ([var:id rhs:expr] ...) . body)
#'(let ([var rhs] ...)
(syntax-parameterize ([vars (list (quote-syntax var) ...)])
. body))]))
;; get-vars: get vars (symbolic name) and their values
(define-syntax (get-vars stx)
(syntax-parse stx
[(_)
(with-syntax ([(var ...) (syntax-parameter-value #'vars)])
#'(list (list (quote var) var) ...))]))
;; Examples:
(get-vars)
;; => '()
(with-vars ([x 1])
(get-vars))
;; => '((x 1))
(with-vars ([x 1])
(with-vars ([y 2] [z 3])
(set! z 17)
(get-vars)))
;; => '((y 2) (z 17))
The easiest way to turn any datum (including a list of symbol) into an identifier with datum->syntax. (You can also use format-id, but that works on only a single identifier.) With these functions, you pass in a syntax object for the scopes you want your new identifier to have, or #f if you want it to inherit the scopes that your current macro is generating.1 Getting your list of identifiers (as one single syntax object, would just be:
(syntax->datum stx '(a b c))
Where '(a b c) is your list of identifiers. Finally, you can then add this in your with-syntax:
(with-syntax ([(local-state-variables ...) (datum->syntax stx ...)])
...)
As a side note, the way to answer the title of your question, just iterate over your list with map producing a new list using format-id:
(map (curry format-id stx "~a") '(a b c)
1Unless I'm wrong, if so, please correct this.

Defining a nested racket macro with access to surrounding variables

I have a macro that extends the racket syntax, and at some point accepts a sequence of bog standard racket expressions. This looks something like this, the relevant syntax variable being body:
(syntax-parse stx
[(_ some-id:id
body:expr ...+)
This macro generates a racket class with a generated method like so:
#'(<class stuff>
(define/public (some-id some-formal-parameter)
body ...)
As I said the body is plain racket code, except for one expression that can be used exclusively in the body, for example:
(define-syntax-rule (tweet identifier value)
(send this publish-tweet (quote identifier) value))
But this does not allow me to use some-formal-parameter because it is not defined. Is there some proper way in which I can define something that can exclusively be used in the body, and can still bind to variables in the context after expansion? Maybe via a splicing syntax class? Reusability is a big bonus, since this "type of body" may exists in multiple (similar) macros.
Some code for testing:
#lang racket
(require (for-syntax syntax/parse))
(define-syntax (define-something stx)
(syntax-parse stx
[(_ some-id:id
body:expr ...+)
#'(define some-id
(new
(class object%
(super-new)
(define/public (displ arg)
(displayln arg))
(define/public (tick some-formal-parameter)
body ...))))]))
(define-syntax-rule (tweet value)
(send this displ value))
(define-something derp
(define a 'not-derp)
(tweet a))
(send derp tick 'derp)
To reformulate the original question now that I know (and can answer) what I wanted to ask: how can I define a macro that can only be used in a certain context (for me: in the body of a method of a racket class), and how can I use dynamically bound variables. In the original code above: when using the expression (tweet a) not only do I want the value of a, but also the value of some-formal-parameter which is bound in the context of the code where the tweet macro is expanded (not where it is defined).
Chris Jester-Young kindly pointed me to syntax parameters, which indeed seem to solve both the issue of dynamic binding and "can only be used in certain contexts". A paper by Eli Barzilay, Ryan Culpepper, and Matthew Flatt helped me understand syntax parameters.
With respect to the original example code I posted, this is the solution I have come up with:
#lang racket
(require
racket/stxparam
(for-syntax syntax/parse))
(define-syntax-parameter tweet
(lambda (stx)
(raise-syntax-error 'tweet "use of an actor keyword outside of the body of an actor" stx)))
(define-syntax (define-something stx)
(syntax-parse stx
[(_ some-id:id
body:expr ...+)
#'(define some-id
(new
(class object%
(super-new)
(define/public (tick some-formal-parameter)
(syntax-parameterize
([tweet
(syntax-rules ()
[(_ value)
(begin (displayln some-formal-parameter)
(displayln value))])])
body ...)
))))]))
(define-something derp
(define a 'not-derp)
(tweet a))
(send derp tick 'derp)
The three key points of attention are the following.
Because of the definition of the tweet macro, whenever it is used outside of the context of a syntax-parametrize statement (that changes the definition of tweet) it will throw an appropriate error.
In the body of the public method tick of our class we change thedefinition of tweet to a macro that matches a pattern of the form (_ value) (which is the value we supply to tweet)
The tweet macro can expand to something that both uses the bound value value, and the value of some-formal-parameter, whatever that may be.
I do not know if this is the proper way to deal with such a situation, but it seems good.

Is struct a macro in Racket?

I remember I read somewhere it is not a macro and is built into the core language. Something like that, I am not sure, because I can no longer remember from where I read it. So is struct a macro in Racket or not? If not, why is it built into the core language?
A macro; struct.rkthas
(define-syntax (struct stx)
(define (config-has-name? config)
(cond
[(syntax? config) (config-has-name? (syntax-e config))]
[(pair? config) (or (eq? (syntax-e (car config)) '#:constructor-name)
(eq? (syntax-e (car config)) '#:extra-constructor-name)
(config-has-name? (cdr config)))]
[else #f]))
(with-syntax ([orig stx])
(syntax-case stx ()
[(_ id super-id fields . config)
(and (identifier? #'id)
(identifier? #'super-id))
(if (not (config-has-name? #'config))
(syntax/loc stx
(define-struct/derived orig (id super-id) fields #:constructor-name id . config))
(syntax/loc stx
(define-struct/derived orig (id super-id) fields . config)))]
[(_ id fields . config)
(identifier? #'id)
(if (not (config-has-name? #'config))
(syntax/loc stx
(define-struct/derived orig id fields #:constructor-name id . config))
(syntax/loc stx
(define-struct/derived orig id fields . config)))]
[(_ id . rest)
(identifier? #'id)
(syntax/loc stx
(define-struct/derived orig id . rest))]
[(_ thing . _)
(raise-syntax-error #f
"expected an identifier for the structure type name"
stx
#'thing)]))))
In Racket IDE, you can use the Open Defining File function to locate the source code (if available).
It looks like I misunderstood the question, when I answered before. So here's an answer to the question that was meant:
Structs are built-in and primitive; they underpin the implementation. In fact, circa 2007, Matthew Flatt commented that in PLT Scheme (as Racket was known then), in a sense everything is a struct:
> At Thu, 31 May 2007 16:45:25 -0700, YC wrote:
> Out of curiosity - does PLT scheme actually use struct as the fundamental
> compound type, i.e. implement closure/etc on top of struct.
The way I think about it, everything is a struct, but some things use a
special-case representation because they're important enough. (The
extreme case is a fixnum).
But an equally valid answer would be: no, not all compound types use
the same representation as values from a struct constructor.
-- Source.
Start of the thread.
In addition to usepla's great answer, I wanted to add:
In the Racket documentation, the "blue box" has a phrase in the top right corner such as procedure or syntax. For struct it says syntax.
If you think about what struct does, among other things it defines named functions derived from the name of the struct. So (struct foo (a b)) will define a foo? predicate and accessors foo-a, foo-b. A plain function can't define new named things like this, so, it must be a macro.
Reading through the implementation code in define-struct.rkt, if you want to do the same thing manually, the following code is a much simplified version of what it is doing.
(define-syntax (struct stx)
;
; Function that creates compound names using syntax objects
(define (make-name id . parts)
(datum->syntax
id
(string->symbol
(apply string-append
(map (lambda (p)
(if (syntax? p)
(symbol->string (syntax-e p))
p))
parts)))
id))
;
(syntax-case stx ()
;
; parse the input and extract the name and variable
; this version uses only one variable for simplicity (3)
[(_ id avar)
;
; guard to ensure we have an identifier
(identifier? #'id)
;
; Create the names (1)
(let ((? (make-name #'id #'id "?"))
(v (make-name #'id #'id "-" #'avar)))
; Generate code to define the various functions associated with
; the new struct (2)
#`(begin
(define id (lambda (vx) (list id vx)))
(define #,? (lambda (x) (eq? (car x) id)))
(define #,v (lambda (x) (second x)))))]
))
1) We have to create the names we will define: but we need to use syntax objects to do so
2) We generate code that will define all of the functions associated with the new object in the global namespace
3) In the real version, most of the code deals with the properties that can be used a struct definition. The real version also needs to handle arbitrary numbers of variables and alternative forms, defaults etc...

Racket Macro Ellipsis Syntax

I have a macro that's working when one argument is passed, and I'd like to expand it to accept n number of arguments using ..., but I'm having trouble figuring out the syntax.
The macro accepts either custom syntax, ie, key:val key:val, or it accepts a procedure.
For example: (3 different usages)
(schema-properties [(name:first-name type:string)])
(schema-properties [(name:age type:number required:#t)])
(schema-properties [(my-custom-fn arg1 arg2 arg3)])
Definition:
(define-syntax (schema-properties stx)
(syntax-parse stx
[(_ [(prop:expr ...)])
(with-syntax ([prop0 (make-prop-hash #'(prop ...))])
#'(list prop0))]))
(define-for-syntax (make-prop-hash stx)
(with-syntax ([(props ...) stx])
(if (regexp-match #px":"
(symbol->string (car (syntax->datum #'(props ...)))))
#'(pairs->hash 'props ...)
#'(props ...))))
This works, in that it checks the prop:expr syntax for the presense of ":", and if it exists, passes it to the function (pairs->hash 'props ...), otherwise, it just invokes it (props ...).
Now, I'd like to be able to pass in:
(schema-properties [(name:first-name type:string)
(name:last-name type:string)
(my-fn arg1 arg2 arg3)])
and have it work the same way. But I'm currently in ellipsis hell and my brain is no longer working correctly.
Any insights are appreciated.
Recommendation: use helper functions to help deal with nesting. Your schema-properties macro knows how to deal with one level of nesting, and you want to apply that to multiple clauses. It's the same principle as when we deal with lists of things: have a helper to deal with the thing, and then apply that across your list. It helps cut down complexity.
For your code, we can do it like this:
#lang racket
(require (for-syntax syntax/parse))
(define-syntax (schema-properties stx)
(syntax-parse stx
[(_ [clause ...])
(with-syntax ([(transformed-clauses ...)
(map handle-clause (syntax->list #'(clause ...)))])
#'(list transformed-clauses ...))]))
;; handle-clause: clause-stx -> stx
(define-for-syntax (handle-clause a-clause)
(syntax-parse a-clause
[(prop:expr ...)
(make-prop-hash #'(prop ...))]))
(define-for-syntax (make-prop-hash stx)
(with-syntax ([(props ...) stx])
(if (regexp-match #px":"
(symbol->string (car (syntax->datum #'(props ...)))))
#'(pairs->hash 'props ...)
#'(props ...))))
;;; Let's try it out. I don't know what your definition of pairs->hash is,
;;; but it probably looks something like this:
(define (pairs->hash . pairs)
(define ht (make-hash))
(for ([p pairs])
(match (symbol->string p)
[(regexp #px"([-\\w]+):([-\\w]+)"
(list _ key value))
(hash-set! ht key value)]))
ht)
(schema-properties [(name:first-name type:string)
(name:last-name type:string)
(list 1 2 3)])
Another recommendation: use syntax classes to help deal with nesting:
First, define a syntax class that recognizes key:value identifiers (and makes their component strings available as key and value attributes):
(begin-for-syntax
(define-syntax-class key-value-id
#:attributes (key value)
(pattern x:id
#:do [(define m (regexp-match "^([^:]*):([^:]*)$"
(symbol->string (syntax-e #'x))))]
#:fail-unless m #f
#:with (_ key value) m)))
Now define a clause as either a sequence of those (to be handled one way) or anything else (to be treated as an expression, which must produce a procedure). The code attribute contains the interpretation of each kind of clause.
(begin-for-syntax
(define-syntax-class clause
#:attributes (code)
(pattern (x:key-value-id ...)
#:with code #'(make-immutable-hash '((x.key . x.value) ...)))
(pattern proc
#:declare proc (expr/c #'(-> any))
#:with code #'(proc.c))))
Now the macro just puts the pieces together:
(define-syntax (schema-properties stx)
(syntax-parse stx
[(_ [c:clause ...])
#'(list c.code ...)]))