I recently have this question for my homework and I have trouble figuring it out. I tried searching online, but I can't seem to find any answers.
" Some file systems use two block sizes for disk storage allocation,
for example, 4- Kbyte and 512-byte blocks. Thus, a 6 Kbytes file can
be allocated with a single 4- Kbyte block and four 512-byte blocks.
Discuss the advantage of this scheme compared to the file systems that
use one block size for disk storage allocation. "
So are more blocks better?
Any help? thanks in advance.
You can't have a big amount of different block sizes, that would be hell to implement and manage. I also think that some hardware limitations restrain what sizes you can use.
Now the thing is, unless the amount of data you wish to store fits exactly in all the blocks you are using, then some space is going to be wasted in the last block.
For example, if your block is one gygabyte long (hypothetically speaking), and you want to store a 1 or 2 bytes long file, you've just wasted nearly a gigabyte of disk space. All information is stored as blocks. You can't store half a block.
Long blocks make for better performance, though, since the disk may spend more time fetching information from a block before proceeding to the next one. Also it's less blocks to track and manage.
Linux is a fun operating system to play with because it can work with so many different file systems (as far as I remember you only get some variations of FAT and NTFS with Windows). You could read more about file system on this link:
Linux System Administrators Guide: Chapter 5. Using Disks and Other Storage Media
See section 5.10.5 for more info on advantages and disadvantages of small and big block sizes.
So back to your question: having different block sizes like that allows you to optimize storage. You can minimize wasted space by switching to smaller blocks by the end of the file, while having as few blocks as possible to reduce I/O times.
Related
Background and Use Case
I have around 30 GB of data that never changes, specifically, every dictionary of every language.
Client requests to see the definition of a word, I simply respond with it.
On every request I have to conduct an algorithmic search of my choice so I don’t have to loop through the over two hundred million words I have stored in my .txt file.
If I open the txt file and read it so I can search for the word, it would take forever due to the size of the file (even if that file is broken down into smaller files, it is not feasible nor it is what I want to do).
I came across the concept of mmap, mentioned to me as a possible solution to my problem by a very kind gentleman on discord.
Problem
As I was learning about mmap I came across the fact that mmap does not store the data on the RAM but rather on a virtual RAM… well regardless of which it is, my server or docker instances may have no more than 64 GB of RAM and that chunk of data taking 30 of them is quite painful and makes me feel like there needs to be an alternative that is better. Even on a worst case scenario, if my server or docker container does not have enough RAM for the data stored on mmap, then it is not feasible, unless I am wrong as to how this works, which is why I am asking this question.
Questions
Is there better solution for my use case than mmap?
Will having to access such a large amount of data through mmap so I don’t have to open and read the file every time allocate RAM memory of the amount of the file that I am accessing?
Lastly, if I was wrong about a specific statement I made on what I have written so far, please do correct me as I am learning lots about mmap still.
Requirements For My Specific Use Case
I may get a request from one client that has tens of words that I have to look up, so I need to be able to retrieve lots of data from the txt file effectively.
The response to the client has to be as quick as possible, the quicker the better, I am talking ideally a less than three seconds, or if impossible, then as quick as it can be.
I have a comma separated data file, lets assume each record is of fixed length.
How does the OS(Linux) determine, which data parts are kept in one page in the hard disk?
Does it simply look at the file, organize the records one after the other(sequentially) in one page? Is it possible to programmatically set this or does the OS take care of it automatically?
Your question is quite general - you didn't specify which OS or filesystem - so the answer will be too.
Generally speaking the OS does not examine the data being written to a file. It simply writes the data to enough disk sectors to contain the data. If the sector size is 4K, then bytes 0-4095 are written to the first sector, bytes 4096-8191 are written to the second sector, etc. The OS does this automatically.
Very few programs wish to manage their disk sector allocation. One exception is high performance database management systems, which often implement their own filesystem in order have low level control of the file data to sector mapping.
I have learned that in an operating system (Linux), the memory management unit (MMU) can translate a virtual address (VA) to a physical address (PA) via the page table data structure. It seems that page is the smallest data unit that is managed by the VM. But how about the block? Is it also the smallest data unit transfered between the disk and the system memory?
What is the difference between pages and blocks?
A block is the smallest unit of data that an operating system can either write to a file or read from a file.
What exactly is a page?
Pages are used by some operating systems instead of blocks. A page is basically a virtual block. And, pages have a fixed size – 4K and 2K are the most commonly used sizes. So, the two key points to remember about pages is that they are virtual blocks and they have fixed sizes.
Why pages may be used instead of blocks
Pages are used because they make processing easier when there are many storage devices, because each device may support a different block size. With pages the operating system can deal with just a fixed size page, rather than try to figure out how to deal with blocks that are all different sizes. So, pages act as sort of a middleman between operating systems and hardware drivers, which translate the pages to the appropriate blocks. But, both pages and blocks are used as a unit of data storage.
http://www.programmerinterview.com/index.php/database-sql/page-versus-block/
Generally speaking, the hard-disk is one of those devices called "block-devices" as opposed to "character-devices" because the unit of transferring data is in the block.
Even if you want only a single character from a file, the OS and the drive will get you a block and then give you access only to what you asked for while the rest remains in a specific cache/buffer.
Note: The block size, however, can differ from one system to another.
To clear a point:
Yes, any data transferred between the hard disk and the RAM is usually sent in blocks rather than actual bytes.
Data which is stored in RAM is managed, typically, by pages yes; of course the assembly instructions only know byte addresses.
Stonebraker's paper (Operating System Support for Database Management) explains that, "the overhead to fetch a block from the buffer pool manager usually includes that of a system call and a core-to-core move." Forget about the buffer-replacement strategy, etc. The only point I question is the quoted.
My understanding is that when a DBMS wants to read a block x it issues a common read instruction. There should be no difference from that of any other application requesting a read.
I'm not looking for generic answers (I got them, and read papers). I seek a detailed answer of the described problem.
See Does a file read from a Java application invoke a system call?
Reading from your other question, and working forward:
When the DBMS must bring a page from disk it will involve at least one system call. At his point most DBMSs place the page into their own buffer. (They also end up in the OS' buffer, but that's unimportant).
So, we have one system call. However, we can avoid any further system calls. This is possible because the DBMS is caching pages in its own memory space. The first thing the DBMS will do when it decides it needs a page is check and see if it has it in its cache. If it does, it retrieves it from there without ever invoking a system call.
The DBMS is free to expire pages in its cache in whatever way is most beneficial for its IO needs. The OS's cache is expired in a more general way since the OS has other things to worry about. One example of this is that a DBMS will typically use a great deal of memory to cache pages as it knows that disk IO is one of the most expensive things it can do. The OS won't do this as it has to balance the cost of disk IO against having memory for other applications to use.
The operating system disk i/o must be generalised to work for a variety of situations. The DBMS can sometimes gain significant performance using less general code that is optimised to its own needs.
The DBMS does its own caching, so doesn't want to work through the O/S caching. It "owns" the patch of disk, so it doesn't need to worry about sharing with other processes.
Update
The link to the paper is a help.
Firstly, the paper is almost thirty years old and is referring to long-obsolete hardware. Notwithstanding that, it makes quite interesting reading.
Firstly, understand that disk i/o is a layered process. It was in 1981 and is even more so now. At the lowest point, a device driver will issue physical read/write instructions to the hardware. Above that may be the o/s kernel code then the o/s user space code then the application. Between a C program's fread() and the disk heads moving, there are at least three or four levels and might be considerably more. The DBMS may seek to improve performance might seek to bypass some layers and talk directly with the kernel, or even lower.
I recall some years ago installing Oracle on a Sun box. It had an option to dedicate a disk as a "raw" partition, where Oracle would format the disk in its own manner and then talk straight to the device driver. The O/S had no access to the disk at all.
It's mainly a performance issue. A dbms has highly specific and unusual I/O demands.
The OS may have any number of processes doing I/O and filling its buffers with the assorted cached data that this produces.
And of course there is the issue of size and what gets cached (a dbms may be able to peform better cache for its needs than the more generic device buffer caching).
And then there is the issue that a generic “block” may in fact amount to a considerably larger I/O burden (this depends on partitioning and such like) than what a dbms ideally would like to bear; its own cache may be tuned to work better with the layout of the data on the disk and thereby able to minimise I/O.
A further thing is the issue of indexes and similar means to speed up queries, which of course works rather better if the cache actually knows what these mean in the first place.
The real issue is that the file buffer cache is not in the filesystem used by the DBMS; it's in the kernel and shared by all of the filesystems resident in the system. Any memory read out of the kernel must be copied into user space: this is the core-to-core move you read about.
Beyond this, some other reasons you can't rely on the system buffer pool:
Often, DBMS's have a really good idea about its upcoming access patterns, and it can't communicate these patterns to the kernel. This can lead to lower performance.
The buffer cache is traditional stored in a fixed-size kernel memory range, so it cannot grow or shrink. That also means the cache is much smaller than main memory, so by using the buffer cache a DBMS would be unable to take advantage of system resources.
I know this is old, but it came up as unanswered.
Essentially:
The OS uses a separate address spaces for every process.
Retrieving information from any other address space requires a system call or page fault. **(see below)
The DBMS is a process with its own address space.
The OS buffer pool Stonebraker describes is in the kernel address space.
So ... to get data from the kernel address space to the DBMS's address space, a system call or page fault is unavoidable.
You're correct that accessing data from the OS buffer pool manager is no more expensive than a normal read() call. (In fact, it's done with a normal read call.) However, Stonebraker is not talking about that. He's specifically discussing the caching needs of DBMSes, after the data has been read from the disk and is present in RAM.
In essence, he's saying that the OS's buffer pool cache is too slow for the DBMS to use because it's stored in a different address space. He's suggesting using a local cache in the same process (and therefore same address space), which can give you a significant speedup for applications like DBMSes which hit the cache heavily, because it will eliminate that syscall overhead.
Here's the exact paragraph where he discusses using a local cache in the same process:
However, many DBMSs including INGRES
[20] and System R [4] choose to put a
DBMS managed buffer pool in user space
to reduce overhead. Hence, each of
these systems has gone to the
trouble of constructing its own
buffer pool manager to enhance
performance.
He also mentions multi-core issues in the excerpt you quote above. Similar effects apply here, because if you can have just one cache per core, you may be able to avoid the slowdowns from CPU cache flushes when multiple CPUs are reading and writing the same data.
** BTW, I believe Stonebraker's 1981 paper is actually pre-mmap. He mentions it as future work. "The trend toward providing the file system as a part of shared virtual memory (e.g., Pilot [16]) may provide a solution to this problem."
Primarily this seems to be a technique used by games, where they have all the sounds in one file, textures in another etc. With these files commonly reaching the GB size.
What is the reason behind doing this over maintaining it all in subdirectories as small files - one per texture which many small games use this, with the monolithic system being favoured by larger companies?
Is there some file system overhead with lots of small files?
Are they trying to protect their property - although most just seem to be a compressed file with a new extension?
The reasons we use an "archive" system like this where I work (a game development company):
lookup speed: We rarely need to iterate over files in a directory; we're far more often looking them up directly by name. By using a custom "file allocation table" that is essentially just a sequence of hash( normalized_filename ) -> [ offset, size ], we can look up files very quickly. We can also keep this index in RAM, potentially interleave it with other index tables, etc.
(When we do need to iterate, we can either easily iterate over all files in a .arc, or we can store a list of filenames, a list of hash-of-filenames, or just a list of [ offset, size ] pairs somewhere -- maybe even as a file in the archive. This is usually faster than directory-traversal on a FS.)
metadata: It's easy for us to tuck in any file metadata we want. For example, a single bit in the "size" field indicates whether the file is compressed or not (if it is, it has a header with more details about how to decompress it). We can even vary compression on pieces of a file if we know enough about the structure of the file ahead of time (we do this for sprite archives).
size: One of the devices we use has a "file size must be a multiple of X" requirement, where X is large compared to some of our files. For example, some of our lua scripts end up being just a few hundred bytes when compiled; taking extra overhead per .luc file adds up quickly.
alignment: on the other hand, sometimes we want to waste space. To take advantage of faster streaming (e.g. background DMA) from the filesystem, some of our files do want to obey certain alignment/size requirements. We can take care of that right in the tool, and the align/size we're shooting for doesn't necessarily have to line up with the underlying FS, allowing us to waste space only where we need it.
But those are the mundane reasons. The more fun stuff:
Each .arc registers in a list, and attempts to open a file know to look in the arcs. We search already-in-RAM archives first, then archives on the device FS, then the actual device FS. This gives us a ton of flexibility:
dynamic additions to the filesystem: at any time we can stream a new file or archive to the machine in question (over the network or the like) and have it appear as part of the "logical" filesystem; this is great when the actual FS resides in ROM or on a CD, and allows us to iterate much more quickly than we could otherwise.
(Doom's .wad system is a sort of example of the above, which allows modders to more easily override assets and scripts built into the game.)
possibility of no underlying fs: It's possible to use bin2obj to embed an entire arc directly in the executable (.rodata) at link time, at which point you don't ever need to look at the device FS -- we do this for certain small demo builds and the like. We can also send levels across the network or savegame-sneakernet this way. =)
organization and load/unload: since we can load and unload and override virtual "pieces" of our filesystem at any time, we can do some performance tricks with having the number of files in the FS be very small at any given time. We can additionally specify that an entire archive be loaded into memory, index table and data; our file load code is smart enough to know that if the file is already in memory, it doesn't need to do anything to read it other than move a pointer around. Some of the higher level code can actually detect that the file is in ram and just ask for the probably-already-looks-like-a-struct pointer directly.
portability: we only need to figure out how to get a few files on each new device we use, and then the remainder of the FS code is more or less the same. =) We do change the tool output a bit occasionally (for alignment reasons), but most of the processing remains the same.
de-duplication: with smarter archives, such as our sprite archives, we can (and do) de-duplicate data. If "jump" animation's fifth frame and "kick"'s third frame are the same, we can pull apart the file and only store one copy of that frame. We can do the same for whole files.
We ported a PC game to a system with much slower FS access recently. We didn't change the data format, and it turns out iterating through a dir on the raw device FS to load a hundred small XML files was absolutely killing our load times. The solution we used was to take each dir, make it into its own subdir.arc, and stick it in the master game.arc compressed. When the dir was needed (something like opendir was called) we decompressed the entire subdir.arc into RAM, added it to the filesystem, then iterated through it super-quickly.
It's the ability to throw something like this together in a few hours, and to ease the pain of porting across systems, that makes stuff like this worthwhile.
File systems do have an overhead. Usually, a file takes disk space rounded up to some power of 2 (e.g. up to 4 KB), so many small files would waste space. Some modern file systems try to mitigate that, but AFAIK it's not widespread yet. Additionally, file systems are often quite slow when accessing multiple files. E.g. it is usually considerably faster to copy one 400 MB file than 4000 100 KB files.
File systems come in handy when you have to modify files, because they handle changing file sizes much better than any simple home-grown solution. However, that's certainly not the case for constant game data.
On Apple systems, the most common way is to use, as you suggest, directories. They are called Bundles, and are in the Finder represented as just one file, but if you explore them more, they're actually directories. This makes writing code and conserving memory when loading individual items out of this bundle very easy. :-) Also, this makes taking incremental backups of gigantic databases easy, as for instance your iPhoto database is just a bundle, so you just backup changed and new files
On Windows, however, I believe this is much harder to do, it will look like a directory "no matter what" (I'm sure smart people have found a solution that will make Explorer see certain directories as a single file, but it's not common).
From a games developer point of view, you're not dealing with so small files that disk space overhead is something you're very much concerned with, so I doubt #doublep's suggestion, since it makes for such a hassle, but it makes it much easier with a single file if users are to copy an entire game over somewhere, then it's easy to check if the entire set is correct.
And, of course, it's harder to read for people that shouldn't have access to it. But it's also harder to modify, which means harder to patch, and harder to write extensions. Someone that uses extensions a lot, prefers the directory structure: The Sims.
Were I the games developer, I'd love to go for individual files. Then again, I'd be using bundles as I'd be writing for the Mac ;-)
Cheers
Nik
I can think of multiple reasons.
As doublep suggested, files occupy more space on the disc than they require. So an archive saves space. 10k files (of any size) should save you 20MB when packed into an archive. Not exactly a large amount of space nowadays, but still.
The other reason I can think of is disc fragmentation. I suspect a heavily fragmented disc will perform worse when accessing thousands of separate files on a fragmented space. But I'm no expert in this field, so I'd appreciate if someone more experienced verified this.
Finally, I think this may also have something to do with restricting access to separate game files. You can have a bunch of Lua scripts exposed, mess with them and break something. Or you could have the outro cinematic/sound/text/whatever exposed and get spoiled by accessing it. I do that myself as well: I encrypt images with a multipass XOR key, pack text files and config variables into a monolithic file (zipped for extra security) and only leave music freely accessible. This way, the game's secrets will remain undiscovered for a bit longer :).
Or there may be another reason I never thought about :D.
As you know games, especially with larger companies try to squeeze as much performance as they can. One technique is to have all the data in one large file and just DMA it to memory (think of it as a memcpy from CD to RAM). Since all the files are in one large one there will be no disk seeks and you can have a large number of files (which may cause large amount of seeks) all loaded quicky because of the technique.