image focus and FFT - matlab

I am a new to Matlab and I have a project that involves image processing.
I have a number of RGB images and I need to find a way to separate the out of focus from the in focus images. I do not need to correct the focus of the out of focus ones, I just need to find which are out of focus and remove them. I have done FFT2 to the image and then used the radial average of the image of the power spectrum to see if there is a difference between the in focus or out of focus but I do not see a difference between the two.
I decided to use the gradient of the image
[gradx,grady]=gradient(image)
and then take the magnitude
new_image=sqrt((gradx.^2)+(grady.^2))
and try to do the FFT2 using the new_image now instead of the image. The power spectrum does not look like what I expect so I am not sure if I should do the FFT2 on the new_image of the gradx and grady separately. Has anyone have any thoughts about whether this is the right way to do this?
I was also thinking that instead of using the gradient to use a Sobel mask
mask=fspecial('sobel')
mask_x=imfilter(image,mask)
mask_y=imfilter(image,mask')
new_image=sqrt((mask_x.^2)+(mask_y.^2))
and then do FFT2 in the new_image but again the power spectrum is not right. I expect it to start from zero and instead it starts from the highest value and drops exponentially.
Has anyone tried to classify images using this method? Thank you for reading.

A DCT, instead of an FFT/DFT, will get rid of any high frequency discontinuities between the opposite edges of your images.

Related

How to fit an image feature to a curve

I process a bunch 2D each having a sinusoidal feature randomly located in it:
Whereas the amplitude and the period of the sine are known in advance, the exact position is not.
I want to find an exact position of the sine in each image using MATLAB. Standard fitting techniques like Surface Fit won't work here because I only need to fit one feature, not the whole image.
The best idea that comes to my mind is to generate a reference image with a sine with a known location, and then use cross-corrrelation (xcorr2) to find the offset between the two. Maybe you could suggest any faster and simpler solution?

How can I find the boundary surface in this image

I am new to image processing. I want to find the surface between black and white pixels which separates them. Here is the link of image.
The size of image is (21,900,900)
https://drive.google.com/file/d/1zUWK0Fb_n6f1JZou5mrUJq0x3h2X8mBK/view?usp=sharing
I tried to use boundarymask command of MATLAB in one plane of image but I am getting noise and also it works for 2d image only. Please suggest me how to find boundary 3d surface here. Thank you.
This is the output image after applying boundarymask.
Your first step should be to get rid of your noise. Since you got some kind of salt and pepper noise you can to that using the median filter on a 2D-image with medfilt2() in matlab. After that you can use an edge ditector to find your edge pixels. The code for this could look like this. If you want the surface, you need to loop this, over the 3rd dimension of your 3D-image. The code will look like this:
for ii=1:16
I=imread('image.tif',ii);
I_bs=boundarymask(I);
I_filt=medfilt2(I_bs,[7 7]);
boundarysurface(:,:,ii)=edge(I_filt,'Canny');
end
The edge detector I used here is certainly overkill for this easy case, but was the easiest thing I could think of in short term. If performance is relevant let me know, and I will give you another approach.

How to remove pepper noise from a non-handwritten scanned document(.tif) in matlab

I am unable to find a method to detect the text area in the document and apply a filter to the rest of the image to clear it from any noise. Please refer to this image. If I do apply a filter to the image anyway, the text doesn't remain visible anymore.
Is there an algorithm in MATLAB that can help me find the textarea and treat it separately?
You can greatly reduce the amount of noise by applying erosion, followed by a gaussian blur (σ=2; the image will be converted to grayscale) followed by conversion back to binary.
Erosion alone will reduce the amount of noise significantly:
After application of gaussian blur and re-conversion into binary, the noise will be further reduced. Note that very small text (like the sub-headline) will be also degraded:
All three needed operations seem to be already implemented in MatLab: See Erosion; Gaussian Blur and Thresholding. However, note that for the example automatic (histogram based) thresholding was used to determine the optimal threshold.

How can I remove the texture from an image using matlab?

How can I use the fourier transform to find out the frequency components which are responsible for the texture on the surface?
Then I have to remove them to have a smooth surface without texture.
This is the image.
Thanks
If you use Fourier Transform and analyze frequency components, then removing high frequency components of the image gives a close effect of low pass filter. However, it does not seem natural since you also manipulate the phase of the image. As people suggest, I also advise low pass filter. More specifically, if you want the color of the given image, you may want to try Gaussian Filter.

Remove paper texture pattern from a photograph

I've scanned an old photo with paper texture pattern and I would like to remove the texture as much as possible without lowering the image quality. Is there a way, probably using Image Processing toolbox in MATLAB?
I've tried to apply FFT transformation (using Photoshop plugin), but I couldn't find any clear white spots to be paint over. Probably the pattern is not so regular for this method?
You can see the sample below. If you need the full image I can upload it somewhere.
Unfortunately, you're pretty much stuck in the spatial domain, as the pattern isn't really repetitive enough for Fourier analysis to be of use.
As #Jonas and #michid have pointed out, filtering will help you with a problem like this. With filtering, you face a trade-off between the amount of detail you want to keep and the amount of noise (or unwanted image components) you want to remove. For example, the median filter used by #Jonas removes the paper texture completely (even the round scratch near the bottom edge of the image) but it also removes all texture within the eyes, hair, face and background (although we don't really care about the background so much, it's the foreground that matters). You'll also see a slight decrease in image contrast, which is usually undesirable. This gives the image an artificial look.
Here's how I would handle this problem:
Detect the paper texture pattern:
Apply Gaussian blur to the image (use a large kernel to make sure that all the paper texture information is destroyed
Calculate the image difference between the blurred and original images
EDIT 2 Apply Gaussian blur to the difference image (use a small 3x3 kernel)
Threshold the above pattern using an empirically-determined threshold. This yields a binary image that can be used as a mask.
Use median filtering (as mentioned by #Jonas) to replace only the parts of the image that correspond to the paper pattern.
Paper texture pattern (before thresholding):
You want as little actual image information to be present in the above image. You'll see that you can very faintly make out the edge of the face (this isn't good, but it's the best I have time for). You also want this paper texture image to be as even as possible (so that thresholding gives equal results across the image). Again, the right hand side of the image above is slightly darker, meaning that thresholding it well will be difficult.
Final image:
The result isn't perfect, but it has completely removed the highly-visible paper texture pattern while preserving more high-frequency content than the simpler filtering approaches.
EDIT
The filled-in areas are typically plain-colored and thus stand out a bit if you look at the image very closely. You could also try adding some low-strength zero-mean Gaussian noise to the filled-in areas to make them look more realistic. You'd have to pick the noise variance to match the background. Determining it empirically may be good enough.
Here's the processed image with the noise added:
Note that the parts where the paper pattern was removed are more difficult to see because the added Gaussian noise is masking them. I used the same Gaussian distribution for the entire image but if you want to be more sophisticated you can use different distributions for the face, background, etc.
A median filter can help you a bit:
img = imread('http://i.stack.imgur.com/JzJMS.jpg');
%# convert rgb to grayscale
img = rgb2gray(img);
%# apply median filter
fimg = medfilt2(img,[15 15]);
%# show
imshow(fimg,[])
Note that you may want to pad the image first to avoid edge effects.
EDIT: A smaller filter kernel than [15 15] will preserve image texture better, but will leave more visible traces of the filtering.
Well i have tried out a different approach using Anisotropc diffusion using the 2nd coefficient that operates on wider areas
Here is the output i got:
From what i can See from the Picture, the Noise has a relatively high Frequency Compared to the image itself. So applying a low Pass filter should work. Have a look at the Power spectrum abs(fft(...)) to determine the cutoff Frequency.