I've been trying to solve whether two m-by-n matrices A and B are equivalent via
[a,ja] = rref(A,tol)
[b,jb] = rref(B,tol)
and then comparing
isequal(a,b) & isequal(ja,jb)
First, I don't really understand what ja and jb are. My problem is that the reduced row echelon form is very simple for both A and B and identical in all cases. I don't know whether this is on purpose or not. For example, I get equivalence for just
A = rand(40,3)
B = rand(40,3)
which I'm not sure is nonsense or not.
It looks like you're trying to check if the reduced row echelon forms of two matrices are element-wise equivalent. From how you've defined A and B, they are (it's effectively an overdetermined system, I believe). However, I think that you may have flipped your rows and columns. If instead you create A and B such that there are more columns than rows (i.e., an augmented matrix of an underdetermined system):
A = rand(3,40)
B = rand(3,40)
then when you run rref, you'll see a much different output and your comparison will return false as you perhaps expected.
Also, I think that it is sufficient to use the following, as two matrices that are equal element-wise will surely share the same rank (or approximation thereof):
a = rref(A,tol);
b = rref(B,tol);
isequal(a,b)
Related
My goal is to solve for a matrix [A] that satisfies [A]*[B]=[C] where [C] is known and [B] is randomly generated. Below is an example:
C=[1/3 1/3 1/3]'*[1/3 1/6 1/6 1/6 1/6];
B=rand(5,5);
A=C*pinv(B);
A*B=C_test;
norm(C-C_test);
ans =
4.6671e-16
Here the elements of [C_test] are within 1e-15 to the original [C], but when [B] has less rows than columns, the error dramatically increases (not sure is norm() is the best way to show the error, but I think it illustrates the problem). For example:
B=rand(4,5);
A=C*pinv(B);
A*B=C_test;
norm(C-C_test);
ans =
0.0173
Additional methods:
QR-Factorization
[Q,R,P]=qr(B);
A=((C*P)/R))*Q';
norm(C-A*B);
ans =
0.0173
/ Operator
A=C/B;
norm(C-A*B);
ans =
0.0173
Why does this happen? In both cases [B]*pinv([B])=[I] so it seems like the process should work.
If this is a numerical or algebraic fact of life associated with pinv() or the other methods, is there another way I can generate [A] to satisfy the equation? Thank you!
Since C is 3×5, the number of elements in C and hence the number of equations is equal to 15. If B is 5×5, the number of unknowns (the elements in A) equals 3×5 = 15 as well, and the solution will be accurate.
If on the other hand B is for instance 3×5, the number of elements in A is equal to 3×3 = 9 and hence the system is overdetermined, which means that the resulting A will be the least-squares solution.
See for general information wikipedia: System of linear equations, and Matlabs Overdetermined system.
The resulting matrix A is the best fit and there is no way to improve (in a least square sense).
In response to your second question: you are measuring the quality of A*B as an approximation of C by applying the 2-norm to A*B-C: which is equivalent to least-squares fitting. In this measure, all the approaches that you use provide the optimal answer.
If you however would prefer some other measure, such as the 1-norm, the Infinity-norm or any other measure (for instance by picking different weights for column, row or element), the obtained answers from the original approach will of course not be necessarily optimal with respect to this new measure.
The most general approach would be to use some optimization routine, like this:
x = fminunc(f, zeros(3*size(B,1),1));
A = reshape(x,3,size(B,1));
where f is some (any) measure. The least-square measure should result in the same A. So if you try this one:
f = #(x) norm(reshape(x,3,size(B,1))*B - C);
A should match the results in your approaches.
But you could use any f here. For instance, try the 1-norm:
f = #(x) norm(reshape(x,3,size(B,1))*B - C, 1);
Or something crazy like:
f = #(x) sum(abs(reshape(x,3,size(B,1))*B - C)*[1 10 100 1000 10000]');
This will give different results, which are according to the new measure f optimal. That being said, I would stick to the least squares ;)
I'm working with a fairly large 3D matrix (32x87x378), and I want to be able to extract every Nth element of a matrix, while keeping them in the same order. Similar to a previous question I asked: Matlab: Extracting Nth element of a matrix, while maintaining the original order of matrix
The method I was given was quite practical (and simple) and works well in most instances. For a random (1x20) matrix, where I wanted every 5th value, beginning with 4 and 5 (so that I am left with a 1x8 matrix (ab) of elements 4,5,9,10,14,15,19,20). It is done as follows:
r = rand(1,20);
n = 5;
ab = r(sort([4:n:numel(r) 5:n:numel(r)]))
My question is, how can this method be used for a 3D matrix r for it's 3rd dimension (or can it?), such as this:
r = rand(2,5,20);
It should be fairly simple, such as this:
n = 5;
ab = r(sort([4:n:numel(r) 5:n:numel(r)],3));
However, this will then give me a 1x80 matrix, as it does not preserve the original dimensions. Is there a way to correct this using the sort function? I'm also open to other suggestions, but I just want to be sure I am not missing anything.
Thanks in advance.
See if this is what you are after -
ab = r(:,:,sort([4:n:size(r,3) 5:n:size(r,3)]))
Lets say I have two vectors A and B with different lengths Length(A) is not equal to Length(B) and the Values in Vector A, are not the same as in Vector B. I want to compare each value of B with Values of A (Compare means if Value B(i) is almost the same value of A(1:end) for example B(i)-Tolerance<A(i)<B(i)+Tolerance.
How Can I do this without using for loop since the data is huge?
I know ismember(F), intersect,repmat,find but non of those function can really help me
You may try a solution along these lines:
tol = 0.1;
N = 1000000;
a = randn(1, N)*1000; % create a randomly
b = a + tol*rand(1, N); % b is "tol" away from a
a_bin = floor(a/tol);
b_bin = floor(b/tol);
result = ismember(b_bin, a_bin) | ...
ismember(b_bin, a_bin-1) | ...
ismember(b_bin, a_bin+1);
find(result==0) % should be empty matrix.
The idea is to discretize the a and b variables to bins of size tol. Then, you ask whether b is found in the same bin as any element from a, or in the bin to the left of it, or in the bin to the right of it.
Advantages: I believe ismember is clever inside, first sorting the elements of a and then performing sublinear (log(N)) search per element b. This is unlike approaches which explicitly construct differences of each element in b with elements from a, meaning the complexity is linear in the number of elements in a.
Comparison: for N=100000 this runs 0.04s on my machine, compared to 20s using linear search (timed using Alan's nice and concise tf = arrayfun(#(bi) any(abs(a - bi) < tol), b); solution).
Disadvantages: this leads to that the actual tolerance is anything between tol and 1.5*tol. Depends on your task whether you can live with that (if the only concern is floating point comparison, you can).
Note: whether this is a viable approach depends on the ranges of a and b, and value of tol. If a and b can be very big and tol is very small, the a_bin and b_bin will not be able to resolve individual bins (then you would have to work with integral types, again checking carefully that their ranges suffice). The solution with loops is a safer one, but if you really need speed, you can invest into optimizing the presented idea. Another option, of course, would be to write a mex extension.
It sounds like what you are trying to do is have an ismember function for use on real valued data.
That is, check for each value B(i) in your vector B whether B(i) is within the tolerance threshold T of at least one value in your vector A
This works out something like the following:
tf = false(1, length(b)); %//the result vector, true if that element of b is in a
t = 0.01; %// the tolerance threshold
for i = 1:length(b)
%// is the absolute difference between the
%//element of a and b less that the threshold?
matches = abs(a - b(i)) < t;
%// if b(i) matches any of the elements of a
tf(i) = any(matches);
end
Or, in short:
t = 0.01;
tf = arrayfun(#(bi) any(abs(a - bi) < t), b);
Regarding avoiding the for loop: while this might benefit from vectorization, you may also want to consider looking at parallelisation if your data is that huge. In that case having a for loop as in my first example can be handy since you can easily do a basic version of parallel processing by changing the for to parfor.
Here is a fully vectorized solution. Note that I would actually recommend the solution given by #Alan, as mine is not likely to work for big datasets.
[X Y]=meshgrid(A,B)
M=abs(X-Y)<tolerance
Now the logical index of elements in a that are within the tolerance can be obtained with any(M) and the index for B is found by any(M,2)
bsxfun to the rescue
>> M = abs( bsxfun(#minus, A, B' ) ); %//' difference
>> M < tolerance
Another way to do what you want is with a logical expression.
Since A and B are vectors of different sizes you can't simply subtract and look for values that are smaller than the tolerance, but you can do the following:
Lmat = sparse((abs(repmat(A,[numel(B) 1])-repmat(B',[1 numel(A)])))<tolerance);
and you will get a sparse logical matrix with as many ones in it as equal elements (within tolerance). You could then count how many of those elements you have by writing:
Nequal = sum(sum(Lmat));
You could also get the indexes of the corresponding elements by writing:
[r,c] = find(Lmat);
then the following code will be true (for all j in numel(r)):
B(r(j))==A(c(j))
Finally, you should note that this way you get multiple counts in case there are duplicate entries in A or in B. It may be advisable to use the unique function first. For example:
A_new = unique(A);
I have two floating-point number vectors which contain the same values up to a small error, but not necessarily sorted in the same way; for instance, A=rand(10);a=eig(A);b=eig(A+1e-10); (remember that eig outputs eigenvalues in no specified order).
I need to find a permutation p that matches the corresponding elements, i.e. p=mysterious_function(a,b) such that norm(a-b(p)) is small.
Is there an existing function that does this in a sane and safe way, or do I really need to roll out my own slow and poorly-error-checked implementation?
I need this only for test purposes for now, it need not be excessively optimized. Notice that the solution which involves sorting both vectors with sort fails in case of vectors containing complex equal-modulus arguments, such as the typical output of eig().
You seem to want to solve the linear assignment problem. I haven't tested it myself, but this piece of code should help you.
I believe that the sort() solution you discarded might actually work for you; The criteria you have defined minimize norm(a-b) is, by definition, considering the modulus (absolute value) of the complex number: norm(a-b) == sqrt(sum(abs(a-b).^2))
And as you know, SORT orders complex numbers based on their absolute value: sort(a) is equivalent to sort(abs(a)) for complex input.
%# sort by complex-magnitude
[sort(a) sort(b)]
As long as the same order is applied to both, you might as well try lexicographic ordering (sort by real part, if equal, then sort by imaginary part):
%# lexicographic sort order
[~,ordA] = sortrows([real(a) imag(a)],[1 2]);
[~,ordB] = sortrows([real(b) imag(b)],[1 2]);
[b(ordB) a(ordA)]
If you are too lazy to implement the Hungarian algorithm that #AnthonyLabarre suggested, go for brute-forcing:
A = rand(5);
a = eig(A);
b = eig(A+1e-10);
bb = perms(b); %# all permutations of b
nrm = sqrt( sum(abs(bsxfun(#minus, a,bb')).^2) ); %'
[~,idx] = min(nrm); %# argmin norm(a-bb(i,:))
[bb(idx,:)' a]
Beside the fact that eigenvalues returned by EIG are not guaranteed to be sorted, there is another difficulty you have to deal with if you to match eigenvectors as well: they are not unique in the sense that if v is an eigenvector, then k*v is also one, especially for k=-1. Usually you would enforce a sign convention like: multiply by -/+1 so that the largest element in each vector have a positive sign.
I currently implementing an optimization algorithm that requires me to sample without replacement from several sets. Although I am coding in MATLAB, this is essentially a CS question.
The situation is as follows:
I have a finite number of sets (A, B, C) each with a finite but possibly different number of elements (a1,a2...a8, b1,b2...b10, c1, c2...c25). I also have a vector of probabilities for each set which lists a probability for each element in that set (i.e. for set A, P_A = [p_a1 p_a2... p_a8] where sum(P_A) = 1). I normally use these to create a probability generating function for each set, which given a uniform number between 0 to 1, can spit out one of the elements from that set (i.e. a function P_A(u), which given u = 0.25, will select a2).
I am looking to sample without replacement from the sets A, B, and C. Each "full sample" is a sequence of elements from each of the different sets i.e. (a1, b3, c2). Note that the space of full samples is the set of all permutations of the elements in A, B, and C. In the example above, this space is (a1,a2...a8) x (b1,b2...b10) x (c1, c2...c25) and there are 8*10*25 = 2000 unique "full samples" in my space.
The annoying part of sampling without replacement with this setup is that if my first sample is (a1, b3, c2) then that does not mean I cannot sample the element a1 again - it just means that I cannot sample the full sequence (a1, b3, c2) again. Another annoying part is that the algorithm I am working with requires me do a function evaluation for all permutations of elements that I have not sampled.
The best method at my disposal right now is to keep track the sampled cases. This is a little inefficient since my sampler is forced to reject any case that has been sampled before (since I'm sampling without replacement). I then do the function evaluations for the unsampled cases, by going through each permutation (ax, by, cz) using nested for loops and only doing the function evaluation if that combination of (ax, by, cz) is not included in the sampled cases. Again, this is a little inefficient since I have to "check" whether each permutation (ax, by, cz) has already been sampled.
I would appreciate any advice in regards to this problem. In particular, I am looking a method to sample without replacement and keep track of unsampled cases that does not explicity list out the full sample space (I usually work with 10 sets with 10 elements each so listing out the full sample space would require a 10^10 x 10 matrix). I realize that this may be impossible, though finding efficient way to do it will allow me to demonstrate the true limits of the algorithm.
Do you really need to keep track of all of the unsampled cases? Even if you had a 1-by-1010 vector that stored a logical value of true or false indicating if that permutation had been sampled or not, that would still require about 10 GB of storage, and MATLAB is likely to either throw an "Out of Memory" error or bring your entire machine to a screeching halt if you try to create a variable of that size.
An alternative to consider is storing a sparse vector of indicators for the permutations you've already sampled. Let's consider your smaller example:
A = 1:8;
B = 1:10;
C = 1:25;
nA = numel(A);
nB = numel(B);
nC = numel(C);
beenSampled = sparse(1,nA*nB*nC);
The 1-by-2000 sparse matrix beenSampled is empty to start (i.e. it contains all zeroes) and we will add a one at a given index for each sampled permutation. We can get a new sample permutation using the function RANDI to give us indices into A, B, and C for the new set of values:
indexA = randi(nA);
indexB = randi(nB);
indexC = randi(nC);
We can then convert these three indices into a single unique linear index into beenSampled using the function SUB2IND:
index = sub2ind([nA nB nC],indexA,indexB,indexC);
Now we can test the indexed element in beenSampled to see if it has a value of 1 (i.e. we sampled it already) or 0 (i.e. it is a new sample). If it has been sampled already, we repeat the process of finding a new set of indices above. Once we have a permutation we haven't sampled yet, we can process it:
while beenSampled(index)
indexA = randi(nA);
indexB = randi(nB);
indexC = randi(nC);
index = sub2ind([nA nB nC],indexA,indexB,indexC);
end
beenSampled(index) = 1;
newSample = [A(indexA) B(indexB) C(indexC)];
%# ...do your subsequent processing...
The use of a sparse array will save you a lot of space if you're only going to end up sampling a small portion of all of the possible permutations. For smaller total numbers of permutations, like in the above example, I would probably just use a logical vector instead of a sparse vector.
Check the matlab documentation for the randi function; you'll just want to use that in conjunction with the length function to choose random entries from each vector. Keeping track of each sampled vector should be as simple as just concatenating it to a matrix;
current_values = [5 89 45]; % lets say this is your current sample set
used_values = [used_values; current_values];
% wash, rinse, repeat