Let's take two vectors:
a = [1 ; 2; 3]
b = [0 ; 9 ; -5]
If I want minimum value of the vector and it's position I can simply:
[x, ix] = min(a)
I can also compare two vectors and get minimum values:
> min(a, b)
ans =
0
2
-5
But it is impossible to get positions of min values of two vectors:
> [x, ix] = min(a, b)
x =
0
2
-5
error: element number 2 undefined in return list
Why? How to get them? Is there a simple method?
here's how to do that:
[v id]=min([a,b]')
It's a matter of having the right insight:
[x,ix] = min([a b],[],2)
You must think about what the intended output of ix is.
This shows you in which vector the minimum is:
ix=a<b;
x=a.*ix+b.*not(ix);
Related
I'm trying to map (x,y) values to certain numbers. The situation can be explained by example like:
x=[-3 -1 3 1 3 1 1];
y=[-1 -3 1 3 1 3 1];
(-3,3) => 1
(-3,1) => 2
(-3,-1) => 3
(-3,-3) => 4 ... There are 16 values like this and I know them.
So, I want to get a vector which has all mapping values.
How can I implement this in MATLAB in an easier way?
My solution for this problem is as follows:
r_1(r_1 >2) = 4;
r_1(r_1 <=2& r_1>0) = 3;
r_1(r_1 <=0& r_1>-2) = 2;
r_1(r_1 <=-2) = 1;
r_2(r_2>2) = 1;
r_2(r_2 <=2 & r_2 >0) = 2;
r_2(r_2 <=0 & r_2 >-2) = 3;
r_2(r_2 <=-2) = 4;
consellations = reshape(1:16,4,4);
ml_container = zeros(length(r_1),1);
for a = 1:length(r_1)
ml_container(a) = consellations(r_2(a),r_1(a));
end
Is there a better way for getting rid of "for"?
r1 corresponds to x
r2 corresponds to y
This looks like 16-ary QAM demodulation, no? I would use histc to separate the analog values from the I and Q (r1 and r2) channels into their bins, then use simple multiplication to assemble those into a single symbol.
[n r_1]=histc(x, [-Inf -2 0 2 Inf]);
[n r_2]=histc(y, [-Inf -2 0 2 Inf]);
% r_1 and r_2 now contain the bin index in their dimensions
symbol = (r_1-1)*4 + (r_2-1); % 0-based symbol index
The mapping of r_1 and r_2 bins to a symbol value is arbitrary. If you want to match whatever you currently generate, you may need to transform r_1 or r_2, for example with 4-r_1 to "invert" the mapping. I would also generalize this by pulling 4 out into a parameter.
Would there be a function in matlab, or an easy way, to generate the quantile groups to which each data point belongs to?
Example:
x = [4 0.5 3 5 1.2];
q = quantile(x, 3);
ans =
1.0250 3.0000 4.2500
So I would like to see the following:
result = [2 1 2 3 1]; % The quantile groups
In other words, I am looking for the equivalent of this thread in matlab
Thanks!
You can go through all n quantiles in a loop and use logical indexing to find the quantile
n = 3;
q = quantile(x,n);
y = ones(size(x));
for k=2:n
y(x>=q(k)) = k;
end
Depending on how you define "quantile group", you could use:
If "quantile group" means how many values in q are less than x:
result = sum(bsxfun(#gt, x(:).', q(:)));
If "quantile group" means how many values in q are less than or equal to x:
result = sum(bsxfun(#ge, x(:).', q(:)));
If "quantile group" means index of the value in q which is closest to each value in x:
[~, result] = min(abs(bsxfun(#minus, x(:).', q(:))));
None of these returns the result given in your example, though: the first gives [2 0 1 3 1], the second [2 0 2 3 1], the third [3 1 2 3 1].
I need to replace the zeros (or NaNs) in a matrix with the previous element row-wise, so basically I need this Matrix X
[0,1,2,2,1,0;
5,6,3,0,0,2;
0,0,1,1,0,1]
To become like this:
[0,1,2,2,1,1;
5,6,3,3,3,2;
0,0,1,1,1,1],
please note that if the first row element is zero it will stay like that.
I know that this has been solved for a single row or column vector in a vectorized way and this is one of the nicest way of doing that:
id = find(X);
X(id(2:end)) = diff(X(id));
Y = cumsum(X)
The problem is that the indexing of a matrix in Matlab/Octave is consecutive and increments columnwise so it works for a single row or column but the same exact concept cannot be applied but needs to be modified with multiple rows 'cause each of raw/column starts fresh and must be regarded as independent. I've tried my best and googled the whole google but coukldn’t find a way out. If I apply that same very idea in a loop it gets too slow cause my matrices contain 3000 rows at least. Can anyone help me out of this please?
Special case when zeros are isolated in each row
You can do it using the two-output version of find to locate the zeros and NaN's in all columns except the first, and then using linear indexing to fill those entries with their row-wise preceding values:
[ii jj] = find( (X(:,2:end)==0) | isnan(X(:,2:end)) );
X(ii+jj*size(X,1)) = X(ii+(jj-1)*size(X,1));
General case (consecutive zeros are allowed on each row)
X(isnan(X)) = 0; %// handle NaN's and zeros in a unified way
aux = repmat(2.^(1:size(X,2)), size(X,1), 1) .* ...
[ones(size(X,1),1) logical(X(:,2:end))]; %// positive powers of 2 or 0
col = floor(log2(cumsum(aux,2))); %// col index
ind = bsxfun(#plus, (col-1)*size(X,1), (1:size(X,1)).'); %'// linear index
Y = X(ind);
The trick is to make use of the matrix aux, which contains 0 if the corresponding entry of X is 0 and its column number is greater than 1; or else contains 2 raised to the column number. Thus, applying cumsum row-wise to this matrix, taking log2 and rounding down (matrix col) gives the column index of the rightmost nonzero entry up to the current entry, for each row (so this is a kind of row-wise "cummulative max" function.) It only remains to convert from column number to linear index (with bsxfun; could also be done with sub2ind) and use that to index X.
This is valid for moderate sizes of X only. For large sizes, the powers of 2 used by the code quickly approach realmax and incorrect indices result.
Example:
X =
0 1 2 2 1 0 0
5 6 3 0 0 2 3
1 1 1 1 0 1 1
gives
>> Y
Y =
0 1 2 2 1 1 1
5 6 3 3 3 2 3
1 1 1 1 1 1 1
You can generalize your own solution as follows:
Y = X.'; %'// Make a transposed copy of X
Y(isnan(Y)) = 0;
idx = find([ones(1, size(X, 1)); Y(2:end, :)]);
Y(idx(2:end)) = diff(Y(idx));
Y = reshape(cumsum(Y(:)), [], size(X, 1)).'; %'// Reshape back into a matrix
This works by treating the input data as a long vector, applying the original solution and then reshaping the result back into a matrix. The first column is always treated as non-zero so that the values don't propagate throughout rows. Also note that the original matrix is transposed so that it is converted to a vector in row-major order.
Modified version of Eitan's answer to avoid propagating values across rows:
Y = X'; %'
tf = Y > 0;
tf(1,:) = true;
idx = find(tf);
Y(idx(2:end)) = diff(Y(idx));
Y = reshape(cumsum(Y(:)),fliplr(size(X)))';
x=[0,1,2,2,1,0;
5,6,3,0,1,2;
1,1,1,1,0,1];
%Do it column by column is easier
x=x';
rm=0;
while 1
%fields to replace
l=(x==0);
%do nothing for the first row/column
l(1,:)=0;
rm2=sum(sum(l));
if rm2==rm
%nothing to do
break;
else
rm=rm2;
end
%replace zeros
x(l) = x(find(l)-1);
end
x=x';
I have a function I use for a similar problem for filling NaNs. This can probably be cutdown or sped up further - it's extracted from pre-existing code that has a bunch more functionality (forward/backward filling, maximum distance etc).
X = [
0 1 2 2 1 0
5 6 3 0 0 2
1 1 1 1 0 1
0 0 4 5 3 9
];
X(X == 0) = NaN;
Y = nanfill(X,2);
Y(isnan(Y)) = 0
function y = nanfill(x,dim)
if nargin < 2, dim = 1; end
if dim == 2, y = nanfill(x',1)'; return; end
i = find(~isnan(x(:)));
j = 1:size(x,1):numel(x);
j = j(ones(size(x,1),1),:);
ix = max(rep([1; i],diff([1; i; numel(x) + 1])),j(:));
y = reshape(x(ix),size(x));
function y = rep(x,times)
i = find(times);
if length(i) < length(times), x = x(i); times = times(i); end
i = cumsum([1; times(:)]);
j = zeros(i(end)-1,1);
j(i(1:end-1)) = 1;
y = x(cumsum(j));
I have a vector a=[1 2 3 1 4 2 5]'
I am trying to create a new vector that would give for each row, the occurence number of the element in a. For instance, with this matrix, the result would be [1 1 1 2 1 2 1]': The fourth element is 2 because this is the first time that 1 is repeated.
The only way I can see to achieve that is by creating a zero vector whose number of rows would be the number of unique elements (here: c = [0 0 0 0 0] because I have 5 elements).
I also create a zero vector d of the same length as a. Then, going through the vector a, adding one to the row of c whose element we read and the corresponding number of c to the current row of d.
Can anyone think about something better?
This is a nice way of doing it
C=sum(triu(bsxfun(#eq,a,a.')))
My first suggestion was this, a not very nice for loop
for i=1:length(a)
F(i)=sum(a(1:i)==a(i));
end
This does what you want, without loops:
m = max(a);
aux = cumsum([ ones(1,m); bsxfun(#eq, a(:), 1:m) ]);
aux = (aux-1).*diff([ ones(1,m); aux ]);
result = sum(aux(2:end,:).');
My first thought:
M = cumsum(bsxfun(#eq,a,1:numel(a)));
v = M(sub2ind(size(M),1:numel(a),a'))
on a completely different level, you can look into tabulate to get info about the frequency of the values. For example:
tabulate([1 2 4 4 3 4])
Value Count Percent
1 1 16.67%
2 1 16.67%
3 1 16.67%
4 3 50.00%
Please note that the solutions proposed by David, chappjc and Luis Mendo are beautiful but cannot be used if the vector is big. In this case a couple of naïve approaches are:
% Big vector
a = randi(1e4, [1e5, 1]);
a1 = a;
a2 = a;
% Super-naive solution
tic
x = sort(a);
x = x([find(diff(x)); end]);
for hh = 1:size(x, 1)
inds = (a == x(hh));
a1(inds) = 1:sum(inds);
end
toc
% Other naive solution
tic
x = sort(a);
y(:, 1) = x([find(diff(x)); end]);
y(:, 2) = histc(x, y(:, 1));
for hh = 1:size(y, 1)
a2(a == y(hh, 1)) = 1:y(hh, 2);
end
toc
% The two solutions are of course equivalent:
all(a1(:) == a2(:))
Actually, now the question is: can we avoid the last loop? Maybe using arrayfun?
I am trying to create a function that will swap a specific number in a matrix with a specific number in the same matrix. For examlpe, if I start with A = [1 2 3;1 3 2], I want to be able to create B = [2 1 3; 2 3 1], simply by telling matlab to swap the 1's with the 2's. Any advice would be appreciated. Thanks!
If you have the following matrix:
A = [1 2 3; 1 3 2];
and you want all the ones to become twos and the twos to become ones, the following would be the simplest way to do it:
B = A;
B(find(A == 1)) = 2;
B(find(A == 2)) = 1;
EDIT:
As Kenny suggested, this can even be further simplified as:
B = A;
B(A == 1) = 2;
B(A == 2) = 1;
Another way to deal with the original problem is to create a permutation vector indicating to which numbers should the original entries be mapped to. For the example, entries [1 2 3] should be mapped respectively to [2 1 3], so that we can write
A = [1 2 3; 1 3 2];
perm = [2 1 3];
B = perm(A)
(advantage here is that everything is done in one step, and that it also works for operations more complicated than swaps ; drawback is that all elements of A must be positive integers with a known maximum)
Not sure why you would to perform that particular swap (row/column interchanges are more common). Matlab often denotes ':' to represent all of something. Here's how to swap rows and columns:
To swap rows:
A = A([New order of rows,,...], :)
To Swap columns:
A = A(:, [New order of columns,,...])
To change the entire i-th column:
A(:, i) = [New; values; for; i-th; column]
For example, to swap the 2nd and 3rd columns of A = [1 2 3;1 3 2]
A = A(:, [1, 3, 2])
A = [1 2 3; 1 3 2]
alpha = 1;
beta = 2;
indAlpha = (A == alpha);
indBeta = (A == beta);
A(indAlpha) = beta;
A(indBeta ) = alpha
I like this solution, it makes it clearer what is going on. Less magic numbers, could easily be made into a function. Recycles the same matrix if that is important.
I don't have a copy of MatLab installed, but I think you can do some thing like this;
for i=1:length(A)
if (A(i)=1), B(i) = 2, B(i)=A(i)
end
Note, that's only convert 1's to 2's and it looks like you also want to convert 2's to 1's, so you'll need to do a little more work.
There also probably a much more elegant way of doing it given you can do this sort of thing in Matlab
>> A = 1:1:3
A = [1,2,3]
>> B = A * 2
B = [2,4,6]
There might be a swapif primitive you can use, but I haven't used Matlab in a long time, so I'm not sure the best way to do it.
In reference to tarn's more elegant way of swapping values you could use a permutation matrix as follows:
>> a =[1 2 3];
>> T = [1 0 0;
0 0 1;
0 1 0];
>> b = a*T
ans =
1 3 2
but this will swap column 2 and column 3 of the vector (matrix) a; whereas the question asked about swapping the 1's and 2's.
Update
To swap elements of two different values look into the find function
ind = find(a==1);
returns the indices of all the elements with value, 1. Then you can use Mitch's suggestion to change the value of the elements using index arrays. Remeber that find returns the linear index into the matrix; the first element has index 1 and the last element of an nxm matrix has linear index n*m. The linear index is counted down the columns. For example
>> b = [1 3 5;2 4 6];
>> b(3) % same as b(1,2)
ans = 3
>> b(5) % same as b(1,3)
ans = 5
>> b(6) % same as b(2,3)
ans = 6