Composing Options in an idiomatic way - scala

I'm going to write this in Scala, but it's more of a functional programming question.
I have
def foo(x: A): Option[B]
and
def bar(x:B, y:B): C
What's the neatest way to do the following:
def compose(x:A, y:A): Option[C]
such that if either foo(x) of foo(y) are None, then compose(x,y) is None, otherwise compose(x,y) is bar(foo(x).get, foo(y).get). The best I could come up with is:
foo(a).flatMap( aRes => foo(b).map( bRes => bar(a,b)))

The following is syntactic sugar for your current solution:
def compose(x: A, y: A): Option[C] = for {
fx <- foo(x)
fy <- foo(y)
} yield bar(fx, fy)
Sometimes this approach is nicer than writing out flatMap and map, and sometimes it's not. You'll probably find that you pretty quickly develop strong preferences about this kind of thing. Either could be considered idiomatic Scala.
Since you've indicated that you're interested in the question more generally from the perspective of functional programming, however, it's worth noting that the solutions above are overkill in a sense. They take advantage of the fact that Option is monadic, but for this operation you don't actually need all of that power—the fact that Option has an applicative functor instance is enough. To summarize very informally, flatMap gives you sequencing that you don't need here, since the computation of fy doesn't depend on the computation of fx. Using the applicative functor for Option allows you to more clearly capture the fact that there's no dependency between the two computations.
The Scala standard library doesn't provide any kind of representation of applicative functors, but Scalaz does, and with Scalaz you could write your method like this (see the "appendix" of my answer here for some discussion of the syntax):
import scalaz._, Scalaz._
def compose(x: A, y: A): Option[C] = (foo(x) |#| foo(y))(bar)
This will produce the same result as the implementation above, but using a more appropriate abstraction.

How about:
for (x <- foo(a); y <- foo(b)) yield bar(x,y)
for instance:
type A = Int
type C = (A,A)
def foo(x: A): Option[A] = if (x > 0) Some(x) else None
def bar(x: A, y: A): C = x -> y
for (x <- foo(1); y <- foo(2)) yield bar(x,y)
// Option[C] = Some((1,2))
for (x <- foo(-1); y <- foo(2)) yield bar(x,y)
// Option[C] = None
Depending on your taste the very first could be written as:
for {
x <- foo(a)
y <- foo(b)
} yield bar(x,y)

Related

Partially applied/curried function vs overloaded function

Whilst I understand what a partially applied/curried function is, I still don't fully understand why I would use such a function vs simply overloading a function. I.e. given:
def add(a: Int, b: Int): Int = a + b
val addV = (a: Int, b: Int) => a + b
What is the practical difference between
def addOne(b: Int): Int = add(1, b)
and
def addOnePA = add(1, _:Int)
// or currying
val addOneC = addV.curried(1)
Please note I am NOT asking about currying vs partially applied functions as this has been asked before and I have read the answers. I am asking about currying/partially applied functions VS overloaded functions
The difference in your example is that overloaded function will have hardcoded value 1 for the first argument to add, i.e. set at compile time, while partially applied or curried functions are meant to capture their arguments dynamically, i.e. at run time. Otherwise, in your particular example, because you are hardcoding 1 in both cases it's pretty much the same thing.
You would use partially applied/curried function when you pass it through different contexts, and it captures/fills-in arguments dynamically until it's completely ready to be evaluated. In FP this is important because many times you don't pass values, but rather pass functions around. It allows for higher composability and code reusability.
There's a couple reasons why you might prefer partially applied functions. The most obvious and perhaps superficial one is that you don't have to write out intermediate functions such as addOnePA.
List(1, 2, 3, 4) map (_ + 3) // List(4, 5, 6, 7)
is nicer than
def add3(x: Int): Int = x + 3
List(1, 2, 3, 4) map add3
Even the anonymous function approach (that the underscore ends up expanding out to by the compiler) feels a tiny bit clunky in comparison.
List(1, 2, 3, 4) map (x => x + 3)
Less superficially, partial application comes in handy when you're truly passing around functions as first-class values.
val fs = List[(Int, Int) => Int](_ + _, _ * _, _ / _)
val on3 = fs map (f => f(_, 3)) // partial application
val allTogether = on3.foldLeft{identity[Int] _}{_ compose _}
allTogether(6) // (6 / 3) * 3 + 3 = 9
Imagine if I hadn't told you what the functions in fs were. The trick of coming up with named function equivalents instead of partial application becomes harder to use.
As for currying, currying functions often lets you naturally express transformations of functions that produce other functions (rather than a higher order function that simply produces a non-function value at the end) which might otherwise be less clear.
For example,
def integrate(f: Double => Double, delta: Double = 0.01)(x: Double): Double = {
val domain = Range.Double(0.0, x, delta)
domain.foldLeft(0.0){case (acc, a) => delta * f(a) + acc
}
can be thought of and used in the way that you actually learned integration in calculus, namely as a transformation of a function that produces another function.
def square(x: Double): Double = x * x
// Ignoring issues of numerical stability for the moment...
// The underscore is really just a wart that Scala requires to bind it to a val
val cubic = integrate(square) _
val quartic = integrate(cubic) _
val quintic = integrate(quartic) _
// Not *utterly* horrible for a two line numerical integration function
cubic(1) // 0.32835000000000014
quartic(1) // 0.0800415
quintic(1) // 0.015449626499999999
Currying also alleviates a few of the problems around fixed function arity.
implicit class LiftedApply[A, B](fOpt: Option[A => B]){
def ap(xOpt: Option[A]): Option[B] = for {
f <- fOpt
x <- xOpt
} yield f(x)
}
def not(x: Boolean): Boolean = !x
def and(x: Boolean)(y: Boolean): Boolean = x && y
def and3(x: Boolean)(y: Boolean)(z: Boolean): Boolean = x && y && z
Some(not _) ap Some(false) // true
Some(and _) ap Some(true) ap Some(true) // true
Some(and3 _) ap Some(true) ap Some(true) ap Some(true) // true
By having curried functions, we've been able to "lift" a function to work on Option for as many arguments as we need. If our logic functions had not been curried, then we would have had to have separate functions to lift A => B to Option[A] => Option[B], (A, B) => C to (Option[A], Option[B]) => Option[C], (A, B, C) => D to (Option[A], Option[B], Option[C]) => Option[D] and so on for all the arities we cared about.
Currying also has some other miscellaneous benefits when it comes to type inference and is required if you have both implicit and non-implicit arguments for a method.
Finally, the answers to this question list out some more times you might want currying.

Correct way to work with two instances of Option together

When I have one Option[T] instance it is quite easy to perform any operation on T using monadic operations such as map() and flatMap(). This way I don't have to do checks to see whether it is defined or empty, and chain operations together to ultimately get an Option[R] for the result R.
My difficulty is whether there is a similar elegant way to perform functions on two Option[T] instances.
Lets take a simple example where I have two vals, x and y of type Option[Int]. And I want to get the maximum of them if they are both defined, or the one that is defined if only one is defined, and None if none are defined.
How would one write this elegantly without involving lots of isDefined checks inside the map() of the first Option?
You can use something like this:
def optMax(op1:Option[Int], op2: Option[Int]) = op1 ++ op2 match {
case Nil => None
case list => list.max
}
Or one much better:
def f(vars: Option[Int]*) = (for( vs <- vars) yield vs).max
#jwvh,thanks for a good improvement:
def f(vars: Option[Int]*) = vars.max
Usually, you'll want to do something if both values are defined.
In that case, you could use a for-comprehension:
val aOpt: Option[Int] = getIntOpt
val bOpt: Option[Int] = getIntOpt
val maxOpt: Option[Int] =
for {
a <- aOpt
b <- bOpt
} yield max(a, b)
Now, the problem you described is not as common. You want to do something if both values are defined, but you also want to retrieve the value of an option if only one of them is defined.
I would just use the for-comprehension above, and then chain two calls to orElse to provide alternative values if maxOpt turns out to be None.
maxOpt orElse aOpt orElse bOpt
orElse's signature:
def orElse[B >: A](alternative: ⇒ Option[B]): Option[B]
Here's another fwiw:
import scala.util.Try
def maxOpt (a:Option[Int]*)= Try(a.flatten.max).toOption
It works with n arguments (including zero arguments).
Pattern matching would allow something easy to grasp, but that might not be the most elegant way:
def maxOpt[T](optA: Option[T], optB: Option[T])(implicit f: (T, T) => T): Option[T] = (optA, optB) match {
case (Some(a), Some(b)) => Some(f(a, b))
case (None, Some(b)) => Some(b)
case (Some(a), None) => Some(a)
case (None, None) => None
}
You end up with something like:
scala> maxOpt(Some(1), None)(Math.max)
res2: Option[Int] = Some(1)
Once you have that building, block, you can use it inside for-comp or monadic operations.
To get maxOpt, you can also use an applicative, which using Scalaz would look like (aOpt |#| bOpt) { max(_, _) } & then chain orElses as #dcastro suggested.
I assume you expect Some[Int]|None as a result, not Int|None (otherwise return type has to be Any):
def maxOption(opts: Option[Int]*) = {
val flattened = opts.flatten
flattened.headOption.map { _ => flattened.max }
}
Actually, Scala already gives you this ability more or less directly.
scala> import Ordering.Implicits._
import Ordering.Implicits._
scala> val (a,b,n:Option[Int]) = (Option(4), Option(9), None)
a: Option[Int] = Some(4)
b: Option[Int] = Some(9)
n: Option[Int] = None
scala> a max b
res60: Option[Int] = Some(9)
scala> a max n
res61: Option[Int] = Some(4)
scala> n max b
res62: Option[Int] = Some(9)
scala> n max n
res63: Option[Int] = None
A Haskell-ish take on this question is to observe that the following operations:
max, min :: Ord a => a -> a -> a
max a b = if a < b then b else a
min a b = if a < b then a else b
...are associative:
max a (max b c) == max (max a b) c
min a (min b c) == min (min a b) c
As such, any type Ord a => a together with either of these operations is a semigroup, a concept for which reusable abstractions can be built.
And you're dealing with Maybe (Haskell for "option"), which adds a generic "neutral" element to the base a type (you want max Nothing x == x to hold as a law). This takes you into monoids, which are a subtype of semigroups.
The Haskell semigroups library provides a Semigroup type class and two wrapper types, Max and Min, that generically implement the corresponding behaviors.
Since we're dealing with Maybe, in terms of that library the type that captures the semantics you want is Option (Max a)—a monoid that has the same binary operation as the Max semigroup, and uses Nothing as the identity element. So then the function simply becomes:
maxOpt :: Ord a => Option (Max a) -> Option (Max a) -> Option (Max a)
maxOpt a b = a <> b
...which since it's just the <> operator for Option (Max a) is not worth writing. You also gain all the other utility functions and classes that work on Semigroup and Monoid, so for example to find the maximum element of a [Option (Max a)] you'd just use the mconcat function.
The scalaz library comes with a Semigroup and a Monoid trait, as well as Max, Min, MaxVal and MinVal tags that implement those traits, so in fact the stuff that I've demonstrated here in Haskell exists in scalaz as well.

Why is there no >=> semigroup for A => M[A] in Scalaz?

This is a followup to my previous question
Kleisli defines two operators <=< (compose) and >=> (andThen). The >=> looks very natural for me and I don't understand how <=< can be useful.
Moreover, it looks like there is no >=> semigroup for A => M[A] but the <=< semigroup does exist.
What is the rationale behind it ?
compose (or <=<) is a little more natural when translating between point-free and non point-free styles. For example, if we have these functions:
val f: Int => Int = _ + 1
val g: Int => Int = _ * 10
We get the following equivalences:
scala> (f andThen g)(3) == g(f(3))
res0: Boolean = true
scala> (f compose g)(3) == f(g(3))
res1: Boolean = true
In the compose case the f and g are in the same order on both sides of the equation.
Unfortunately Scala's type inference often makes andThen (or >=>) more convenient, and it tends to be more widely used than compose. So this is a case where mathematical conventions and the quirks of Scala's type inference system are at odds. Scalaz (not too surprisingly, given the culture of the project) chooses the math side.

Scalaz equivalent to forM_

I was just playing around a bit with ST in scalaz and came to the point, where I wanted to use the contents of a traversable type to modify my STRef. In Haskell I could do that as follows (taken from the Haskell wiki):
sumST :: Num a => [a] -> a
sumST xs = runST $ do
n <- newSTRef 0
forM_ xs $ \x -> do
modifySTRef n (+x)
readSTRef n
Unfortunately I have not been able to find the equivalent for forM_ in scalaz. So the question is, how can I do this with scalaz?
As you probably know, forM_ is a flipped version of mapM_.
You can use traverse and traverse_ (which are implemented in Scalaz), as generalised versions of mapM and mapM_.
As proof, see that Data.Traversable exports its own implementation of mapM, in terms of traverse.
A scalaz version of sumST might look like this:
def sumST[S, A](as: List[A])(implicit A: Numeric[A]): ST[S, A] =
for { n <- newVar(A.zero)
_ <- as.traverseU(a => n.mod(A.plus(_, a)))
m <- n.read } yield m
def sum[A : Numeric](as: List[A]): A =
runST(new Forall[({type λ[S] = ST[S, A]})#λ] {
def apply[S] = sumST[S, A](as)
})
For readers wondering why it is so much more verbose than the haskell version: We must use the Forall trait to represent a rank-2 polymorphic type in Scala. See http://apocalisp.wordpress.com/2011/03/20/towards-an-effect-system-in-scala-part-1/ for a fuller explanation.

Binary operator with Option arguments

In scala, how do I define addition over two Option arguments? Just to be specific, let's say they're wrappers for Int types (I'm actually working with maps of doubles but this example is simpler).
I tried the following but it just gives me an error:
def addOpt(a:Option[Int], b:Option[Int]) = {
a match {
case Some(x) => x.get
case None => 0
} + b match {
case Some(y) => y.get
case None => 0
}
}
Edited to add:
In my actual problem, I'm adding two maps which are standins for sparse vectors. So the None case returns Map[Int, Double] and the + is actually a ++ (with the tweak at stackoverflow.com/a/7080321/614684)
Monoids
You might find life becomes a lot easier when you realize that you can stand on the shoulders of giants and take advantage of common abstractions and the libraries built to use them. To this end, this question is basically about dealing with
monoids (see related questions below for more about this) and the library in question is called scalaz.
Using scalaz FP, this is just:
def add(a: Option[Int], b: Option[Int]) = ~(a |+| b)
What is more this works on any monoid M:
def add[M: Monoid](a: Option[M], b: Option[M]) = ~(a |+| b)
Even more usefully, it works on any number of them placed inside a Foldable container:
def add[M: Monoid, F: Foldable](as: F[Option[M]]) = ~as.asMA.sum
Note that some rather useful monoids, aside from the obvious Int, String, Boolean are:
Map[A, B: Monoid]
A => (B: Monoid)
Option[A: Monoid]
In fact, it's barely worth the bother of extracting your own method:
scala> some(some(some(1))) #:: some(some(some(2))) #:: Stream.empty
res0: scala.collection.immutable.Stream[Option[Option[Option[Int]]]] = Stream(Some(Some(Some(1))), ?)
scala> ~res0.asMA.sum
res1: Option[Option[Int]] = Some(Some(3))
Some related questions
Q. What is a monoid?
A monoid is a type M for which there exists an associative binary operation (M, M) => M and an identity I under this operation, such that mplus(m, I) == m == mplus(I, m) for all m of type M
Q. What is |+|?
This is just scalaz shorthand (or ASCII madness, ymmv) for the mplus binary operation
Q. What is ~?
It is a unary operator meaning "or identity" which is retrofitted (using scala's implicit conversions) by the scalaz library onto Option[M] if M is a monoid. Obviously a non-empty option returns its contents; an empty option is replaced by the monoid's identity.
Q. What is asMA.sum?
A Foldable is basically a datastructure which can be folded over (like foldLeft, for example). Recall that foldLeft takes a seed value and an operation to compose successive computations. In the case of summing a monoid, the seed value is the identity I and the operation is mplus. You can hence call asMA.sum on a Foldable[M : Monoid]. You might need to use asMA because of the name clash with the standard library's sum method.
Some References
Slides and Video of a talk I gave which gives practical examples of using monoids in the wild
def addOpts(xs: Option[Int]*) = xs.flatten.sum
This will work for any number of inputs.
If they both default to 0 you don't need pattern matching:
def addOpt(a:Option[Int], b:Option[Int]) = {
a.getOrElse(0) + b.getOrElse(0)
}
(Repeating comment above in an answer as requested)
You don't extract the content of the option the proper way. When you match with case Some(x), x is the value inside the option(type Int) and you don't call get on that. Just do
case Some(x) => x
Anyway, if you want content or default, a.getOrElse(0) is more convenient
def addOpt(ao: Option[Int], bo: Option[Int]) =
for {
a <- ao
b <- bo
} yield a + b