Pattern for optional-parameters in Scala using null - scala

I have a function which takes optional parameters. However, these are not Option[?] but can be either set or null:
private def div(id: String = null, cssClass: String = null): JQuery = {
val optId = Option(id)
val optCssClass = Option(cssClass)
...
// deal with optId and optCssClass using the Scala-way™
...
}
I am using "null", which I know should be avoided like the plague. However, it allows me to write code like this:
div(id = "someId") // no cssClass
div(id = "otherId", cssClass = "someClass")
which to my eyes looks nicer than:
div(id = Some("someId")) // no cssClass
div(id = Some("otherId"), cssClass = Some("someClass"))
Is this a known / acceptable Scala pattern? (using null as default parameter values and converting to Option)
Or is it still heressy / bad-practice? If so, why?

why not replace null with empty string ?
private def div(id: String = "", cssClass: String = ""): JQuery = {
val optId = if(id.isEmpty) None else Some(id)
val optCssClass = if(cssClass.isEmpty) None else Some(cssClass)
...
// deal with optId and optCssClass using the Scala-way™
...
}
then you can do:
div(id = "someId") // no cssClass
div(id = "otherId", cssClass = "someClass")

One more approach I can suggest is a Builder Pattern
trait ElementBuilder {
def identified(id: String): ElementBuilder
def build: JQuery
}
case class DivElement(identifier: Option[String] = None)
extends ElementBuilder {
def identified(id: String) = this.copy(identifier = Option(id))
def build: JQuery = ??? // Smth like <div id={identifier}></div>
}
val builder = DivElement()
builder.identified("foo")
val element = builder.build
This approach allows you explicitly set parameters and then build you element by them

Most of the answers here are proposing some variant of the "null object" pattern, by denoting an empty String to mean "undefined" (as in val optId = if(id.isEmpty) None else Some(id))
The catch here is that an empty string might be a valid value! This is true of any String, though you can mitigate the problem by using something really outrageous, possibly involving non-printable characters. e.g:
val UndefinedString = "THIS-IS-A-REALLY-UNLIKELY-VALID-VALUE"
private def div(
id: String = UndefinedString,
cssClass: String = UndefinedString
): JQuery = {
val optId = Option(id) filter (_ != UndefinedString )
val optCssClass = Option(cssClass) filter (_ != UndefinedString )
...
// deal with optId and optCssClass using the Scala-way™
...
}
Better still, you could use a different type to denote your null object. As you can't subclass String you'll have to bump your params up the type hierarchy and make them CharSequences
object NullCharSeq extends CharSequence {
def charAt(idx: Int): Char = ???
def length(): Int = 0
def subSequence(start: Int, end: Int): CharSequence = this
def toString(): String = ???
}
def charSeqToOptStr(cs: CharSequence): Option[String] = cs match {
case NullCharSeq => None
case x => Option(x) map (_.toString)
}
private def div(
id: CharSequence = NullCharSeq,
cssClass: CharSequence = NullCharSeq
): JQuery = {
val optId = charSeqToOptStr(id)
val optCssClass = charSeqToOptStr(cssClass)
...
// deal with optId and optCssClass using the Scala-way™
...
}
It's a heavyweight pattern for one-shot usage, but the cost is quickly amortized if you use it a lot (NullCharSeq and charSeqToOptStr only need to be defined once in the codebase).
There's also zero risk of mistakenly passing your "undefined" String as though it were a valid value. Plus, you gain the ability to directly accept CharBuffer/StringBuffer/StringBuilder as your arguments.

I would also go for a special string like the empty string in #Jiafeng's answer, if this is a sensible value. You could also define a string, like
val NoId = "?"
def div(id: String = NoId) = id match {
case NoId => None
case x => Some(x)
}
Another approach would be to use another type which can be implicitly created from string or absence.
sealed trait MaybeId
implicit class Id(val name: String) extends MaybeId
case object NoId extends MaybeId
def div(id: MaybeId = NoId) = id match {
case NoId => None
case x: Id => Some(x.name)
}
Here is a general type that behaves like Option[A] with implicit conversion A => Some[A].

Related

Determine if the field of a case class is a case class

I'm trying to figure out if a member field in any given case class is also a case class. Taken from this answer, given an instance or an object, I can pass it along and determine if it's a case class:
def isCaseClass(v: Any): Boolean = {
import reflect.runtime.universe._
val typeMirror = runtimeMirror(v.getClass.getClassLoader)
val instanceMirror = typeMirror.reflect(v)
val symbol = instanceMirror.symbol
symbol.isCaseClass
}
However, what I'd like, is to take a case class, extract all of its member fields, and find out which ones are case classes themselves. Something in this manner:
def innerCaseClasses[A](parentCaseClass:A): List[Class[_]] = {
val nestedCaseClasses = ListBuffer[Class[_]]()
val fields = parentCaseClass.getClass.getDeclaredFields
fields.foreach(field => {
if (??? /*field is case class */ ) {
nestedCaseClasses += field.getType
}
})
nestedCaseClasses.toList
}
I thought maybe I could extract the fields, their classes, and use reflection to instantiate a new instance of that member field as its own class. I'm not 100% how to do that, and it seems like perhaps there's an easier way. Is there?
Ah! I've figured it out (simplified the function which tells the determination):
import reflect.runtime.universe._
case class MyThing(str:String, num:Int)
case class WithMyThing(name:String, aThing:MyThing)
val childThing = MyThing("Neat" , 293923)
val parentCaseClass = WithMyThing("Nate", childThing)
def isCaseClass(v: Any): Boolean = {
val typeMirror = runtimeMirror(v.getClass.getClassLoader)
val instanceMirror = typeMirror.reflect(v)
val symbol = instanceMirror.symbol
symbol.isCaseClass
}
def innerCaseClasses[A](parentCaseClass:A): Unit = {
val fields = parentCaseClass.asInstanceOf[Product].productIterator
fields.foreach(field => {
println(s"Field: ${field.getClass.getSimpleName} isCaseClass? " + isCaseClass(field))
})
}
innerCaseClasses(parentCaseClass)
printout:
Field: String isCaseClass? false
Field: MyThing isCaseClass? true

Slick codegen & tables with > 22 columns

I'm new to Slick. I'm creating a test suite for a Java application with Scala, ScalaTest and Slick. I'm using slick to prepare data before the test and to do assertions on the data after the test. The database used has some tables with more than 22 columns. I use slick-codegen to generate my schema code.
For tables with more than 22 columns, slick-codegen does not generate a case class, but a HList-based custom type and a companion ‘constructor’ method. As I understand it, this is because the limitation that tuples and case classes can only have 22 fields. The way the code is generated, the fields of a Row-object can only be accessed by index.
I have a couple of questions about this:
For what I understand, the 22 fields restriction for case classes is already fixed in Scala 2.11, right?
If that's the case, would it be possible to customize slick-codegen to generate case classes for all tables? I looked into this: I managed to set override def hlistEnabled = false in an overridden SourceCodeGenerator. But this results in Cannot generate tuple for > 22 columns, please set hlistEnable=true or override compound. So I don’t get the point of being able to disbale HList. May be the catch is in the ‘or override compound’ part, but I don't understand what that means.
Searching the internet on slick and 22 columns, I came across some solutions based on nested tuples. Would it be possible to customize the codegen to use this approach?
If generating code with case classes with > 22 fields is not a viable option, I think it would be possible to generate an ordinary class, which has an ‘accessor’ function for each column, thus providing a ‘mapping’ from index-based access to name-based access. I’d be happy to implement the generation for this myself, but I think I need some pointers where to start. I think it should be able to override the standard codegen for this. I already use an overridden SourceCodeGenerator for some custom data types. But apart from this use case, the documentation of the code generator does not help me that much.
I would really appreciate some help here. Thanks in advance!
I ended up further customizing slick-codegen. First, I'll answer my own questions, then I'll post my solution.
Answers to questions
The 22 arity limit might be lifted for case classes, it is not for tuples. And slick-codegen also generates some tuples, which I was not fully aware of when I asked the question.
Not relevant, see answer 1. (This might become relevant if the 22 arity limit gets lifted for tuples as well.)
I chose not to investigate this further, so this question remains unanswered for now.
This is the approach I took, eventually.
Solution: the generated code
So, I ended up generating "ordinary" classes for tables with more than 22 columns. Let me give an example of what I generate now. (Generator code follows below.) (This example has less than 22 columns, for brevity and readability reasons.)
case class BigAssTableRow(val id: Long, val name: String, val age: Option[Int] = None)
type BigAssTableRowList = HCons[Long,HCons[String,HCons[Option[Int]]], HNil]
object BigAssTableRow {
def apply(hList: BigAssTableRowList) = new BigAssTableRow(hlist.head, hList.tail.head, hList.tail.tail.head)
def unapply(row: BigAssTableRow) = Some(row.id :: row.name :: row.age)
}
implicit def GetResultBoekingenRow(implicit e0: GR[Long], e1: GR[String], e2: GR[Optional[Int]]) = GR{
prs => import prs._
BigAssTableRow.apply(<<[Long] :: <<[String] :: <<?[Int] :: HNil)
}
class BigAssTable(_tableTag: Tag) extends Table[BigAssTableRow](_tableTag, "big_ass") {
def * = id :: name :: age :: :: HNil <> (BigAssTableRow.apply, BigAssTableRow.unapply)
val id: Rep[Long] = column[Long]("id", O.PrimaryKey)
val name: Rep[String] = column[String]("name", O.Length(255,varying=true))
val age: Rep[Option[Int]] = column[Option[Int]]("age", O.Default(None))
}
lazy val BigAssTable = new TableQuery(tag => new BigAssTable(tag))
The hardest part was finding out how the * mapping works in Slick. There's not much documentation, but I found this Stackoverflow answer rather enlightening.
I created the BigAssTableRow object to make the use of HList transparent for the client code. Note that the apply function in the object overloads the apply from the case class. So I can still create entities by calling BigAssTableRow(id: 1L, name: "Foo"), while the * projection can still use the apply function that takes an HList.
So, I can now do things like this:
// I left out the driver import as well as the scala.concurrent imports
// for the Execution context.
val collection = TableQuery[BigAssTable]
val row = BigAssTableRow(id: 1L, name: "Qwerty") // Note that I leave out the optional age
Await.result(db.run(collection += row), Duration.Inf)
Await.result(db.run(collection.filter(_.id === 1L).result), Duration.Inf)
For this code it's totally transparent wether tuples or HLists are used under the hood.
Solution: how this is generated
I'll just post my entire generator code here. It's not perfect; please let me know if you have suggestions for improvement! Huge parts are just copied from the slick.codegen.AbstractSourceCodeGenerator and related classes and then slightly changed. There are also some things that are not directly related to this question, such as the addition of the java.time.* data types and the filtering of specific tables. I left them in, because they might be of use. Also note that this example is for a Postgres database.
import slick.codegen.SourceCodeGenerator
import slick.driver.{JdbcProfile, PostgresDriver}
import slick.jdbc.meta.MTable
import slick.model.Column
import scala.concurrent.Await
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.Duration
object MySlickCodeGenerator {
val slickDriver = "slick.driver.PostgresDriver"
val jdbcDriver = "org.postgresql.Driver"
val url = "jdbc:postgresql://localhost:5432/dbname"
val outputFolder = "/path/to/project/src/test/scala"
val pkg = "my.package"
val user = "user"
val password = "password"
val driver: JdbcProfile = Class.forName(slickDriver + "$").getField("MODULE$").get(null).asInstanceOf[JdbcProfile]
val dbFactory = driver.api.Database
val db = dbFactory.forURL(url, driver = jdbcDriver, user = user, password = password, keepAliveConnection = true)
// The schema is generated using Liquibase, which creates these tables that I don't want to use
def excludedTables = Array("databasechangelog", "databasechangeloglock")
def tableFilter(table: MTable): Boolean = {
!excludedTables.contains(table.name.name) && schemaFilter(table.name.schema)
}
// There's also an 'audit' schema in the database, I don't want to use that one
def schemaFilter(schema: Option[String]): Boolean = {
schema match {
case Some("public") => true
case None => true
case _ => false
}
}
// Fetch data model
val modelAction = PostgresDriver.defaultTables
.map(_.filter(tableFilter))
.flatMap(PostgresDriver.createModelBuilder(_, ignoreInvalidDefaults = false).buildModel)
val modelFuture = db.run(modelAction)
// customize code generator
val codegenFuture = modelFuture.map(model => new SourceCodeGenerator(model) {
// add custom import for added data types
override def code = "import my.package.Java8DateTypes._" + "\n" + super.code
override def Table = new Table(_) {
table =>
// Use different factory and extractor functions for tables with > 22 columns
override def factory = if(columns.size == 1) TableClass.elementType else if(columns.size <= 22) s"${TableClass.elementType}.tupled" else s"${EntityType.name}.apply"
override def extractor = if(columns.size <= 22) s"${TableClass.elementType}.unapply" else s"${EntityType.name}.unapply"
override def EntityType = new EntityTypeDef {
override def code = {
val args = columns.map(c =>
c.default.map( v =>
s"${c.name}: ${c.exposedType} = $v"
).getOrElse(
s"${c.name}: ${c.exposedType}"
)
)
val callArgs = columns.map(c => s"${c.name}")
val types = columns.map(c => c.exposedType)
if(classEnabled){
val prns = (parents.take(1).map(" extends "+_) ++ parents.drop(1).map(" with "+_)).mkString("")
s"""case class $name(${args.mkString(", ")})$prns"""
} else {
s"""
/** Constructor for $name providing default values if available in the database schema. */
case class $name(${args.map(arg => {s"val $arg"}).mkString(", ")})
type ${name}List = ${compoundType(types)}
object $name {
def apply(hList: ${name}List): $name = new $name(${callArgs.zipWithIndex.map(pair => s"hList${tails(pair._2)}.head").mkString(", ")})
def unapply(row: $name) = Some(${compoundValue(callArgs.map(a => s"row.$a"))})
}
""".trim
}
}
}
override def PlainSqlMapper = new PlainSqlMapperDef {
override def code = {
val positional = compoundValue(columnsPositional.map(c => if (c.fakeNullable || c.model.nullable) s"<<?[${c.rawType}]" else s"<<[${c.rawType}]"))
val dependencies = columns.map(_.exposedType).distinct.zipWithIndex.map{ case (t,i) => s"""e$i: GR[$t]"""}.mkString(", ")
val rearranged = compoundValue(desiredColumnOrder.map(i => if(columns.size > 22) s"r($i)" else tuple(i)))
def result(args: String) = s"$factory($args)"
val body =
if(autoIncLastAsOption && columns.size > 1){
s"""
val r = $positional
import r._
${result(rearranged)} // putting AutoInc last
""".trim
} else {
result(positional)
}
s"""
implicit def $name(implicit $dependencies): GR[${TableClass.elementType}] = GR{
prs => import prs._
${indent(body)}
}
""".trim
}
}
override def TableClass = new TableClassDef {
override def star = {
val struct = compoundValue(columns.map(c=>if(c.fakeNullable)s"Rep.Some(${c.name})" else s"${c.name}"))
val rhs = s"$struct <> ($factory, $extractor)"
s"def * = $rhs"
}
}
def tails(n: Int) = {
List.fill(n)(".tail").mkString("")
}
// override column generator to add additional types
override def Column = new Column(_) {
override def rawType = {
typeMapper(model).getOrElse(super.rawType)
}
}
}
})
def typeMapper(column: Column): Option[String] = {
column.tpe match {
case "java.sql.Date" => Some("java.time.LocalDate")
case "java.sql.Timestamp" => Some("java.time.LocalDateTime")
case _ => None
}
}
def doCodeGen() = {
def generator = Await.result(codegenFuture, Duration.Inf)
generator.writeToFile(slickDriver, outputFolder, pkg, "Tables", "Tables.scala")
}
def main(args: Array[String]) {
doCodeGen()
db.close()
}
}
Update 2019-02-15: *with the release of Slick 3.3.0, as answered by #Marcus there's built-in support for code generation of tables with > 22 columns.
As of Slick 3.2.0, the simplest solution for >22 param case class is to define the default projection in the * method using mapTo instead of the <> operator (per documented unit test):
case class BigCase(id: Int,
p1i1: Int, p1i2: Int, p1i3: Int, p1i4: Int, p1i5: Int, p1i6: Int,
p2i1: Int, p2i2: Int, p2i3: Int, p2i4: Int, p2i5: Int, p2i6: Int,
p3i1: Int, p3i2: Int, p3i3: Int, p3i4: Int, p3i5: Int, p3i6: Int,
p4i1: Int, p4i2: Int, p4i3: Int, p4i4: Int, p4i5: Int, p4i6: Int)
class bigCaseTable(tag: Tag) extends Table[BigCase](tag, "t_wide") {
def id = column[Int]("id", O.PrimaryKey)
def p1i1 = column[Int]("p1i1")
def p1i2 = column[Int]("p1i2")
def p1i3 = column[Int]("p1i3")
def p1i4 = column[Int]("p1i4")
def p1i5 = column[Int]("p1i5")
def p1i6 = column[Int]("p1i6")
def p2i1 = column[Int]("p2i1")
def p2i2 = column[Int]("p2i2")
def p2i3 = column[Int]("p2i3")
def p2i4 = column[Int]("p2i4")
def p2i5 = column[Int]("p2i5")
def p2i6 = column[Int]("p2i6")
def p3i1 = column[Int]("p3i1")
def p3i2 = column[Int]("p3i2")
def p3i3 = column[Int]("p3i3")
def p3i4 = column[Int]("p3i4")
def p3i5 = column[Int]("p3i5")
def p3i6 = column[Int]("p3i6")
def p4i1 = column[Int]("p4i1")
def p4i2 = column[Int]("p4i2")
def p4i3 = column[Int]("p4i3")
def p4i4 = column[Int]("p4i4")
def p4i5 = column[Int]("p4i5")
def p4i6 = column[Int]("p4i6")
// HList-based wide case class mapping
def m3 = (
id ::
p1i1 :: p1i2 :: p1i3 :: p1i4 :: p1i5 :: p1i6 ::
p2i1 :: p2i2 :: p2i3 :: p2i4 :: p2i5 :: p2i6 ::
p3i1 :: p3i2 :: p3i3 :: p3i4 :: p3i5 :: p3i6 ::
p4i1 :: p4i2 :: p4i3 :: p4i4 :: p4i5 :: p4i6 :: HNil
).mapTo[BigCase]
def * = m3
}
EDIT
So, if you then want the slick-codegen to produce huge tables using the mapTo method described above, you override the relevant parts to the code generator and add in a mapTo statement:
package your.package
import slick.codegen.SourceCodeGenerator
import slick.{model => m}
class HugeTableCodegen(model: m.Model) extends SourceCodeGenerator(model) with GeneratorHelpers[String, String, String]{
override def Table = new Table(_) {
table =>
// always defines types using case classes
override def EntityType = new EntityTypeDef{
override def classEnabled = true
}
// allow compound statements using HNil, but not for when "def *()" is being defined, instead use mapTo statement
override def compoundValue(values: Seq[String]): String = {
// values.size>22 assumes that this must be for the "*" operator and NOT a primary/foreign key
if(hlistEnabled && values.size > 22) values.mkString("(", " :: ", s" :: HNil).mapTo[${StringExtensions(model.name.table).toCamelCase}Row]")
else if(hlistEnabled) values.mkString(" :: ") + " :: HNil"
else if (values.size == 1) values.head
else s"""(${values.mkString(", ")})"""
}
// should always be case classes, so no need to handle hlistEnabled here any longer
override def compoundType(types: Seq[String]): String = {
if (types.size == 1) types.head
else s"""(${types.mkString(", ")})"""
}
}
}
You then structure the codegen code in a separate project as documented so that it generates the source at compile time. You can pass your classname as an argument to the SourceCodeGenerator you're extending:
lazy val generateSlickSchema = taskKey[Seq[File]]("Generates Schema definitions for SQL tables")
generateSlickSchema := {
val managedSourceFolder = sourceManaged.value / "main" / "scala"
val packagePath = "your.sql.table.package"
(runner in Compile).value.run(
"slick.codegen.SourceCodeGenerator", (dependencyClasspath in Compile).value.files,
Array(
"env.db.connectorProfile",
"slick.db.driver",
"slick.db.url",
managedSourceFolder.getPath,
packagePath,
"slick.db.user",
"slick.db.password",
"true",
"your.package.HugeTableCodegen"
),
streams.value.log
)
Seq(managedSourceFolder / s"${packagePath.replace(".","/")}/Tables.scala")
}
There are few options available as you have already found out - nested tuples, conversion from Slick HList to Shapeless HList and then to case classes and so on.
I found all those options too complicated for the task and went with customised Slick Codegen to generate simple wrapper class with accessors.
Have a look at this gist.
class MyCodegenCustomisations(model: Model) extends slick.codegen.SourceCodeGenerator(model){
import ColumnDetection._
override def Table = new Table(_){
table =>
val columnIndexByName = columns.map(_.name).zipWithIndex.toMap
def getColumnIndex(columnName: String): Option[Int] = {
columnIndexByName.get(columnName)
}
private def getWrapperCode: Seq[String] = {
if (columns.length <= 22) {
//do not generate wrapper for tables which get case class generated by Slick
Seq.empty[String]
} else {
val lines =
columns.map{c =>
getColumnIndex(c.name) match {
case Some(colIndex) =>
//lazy val firstname: Option[String] = row.productElement(1).asInstanceOf[Option[String]]
val colType = c.exposedType
val line = s"lazy val ${c.name}: $colType = values($colIndex).asInstanceOf[$colType]"
line
case None => ""
}
}
Seq("",
"/*",
"case class Wrapper(private val row: Row) {",
"// addressing HList by index is very slow, let's convert it to vector",
"private lazy val values = row.toList.toVector",
""
) ++ lines ++ Seq("}", "*/", "")
}
}
override def code: Seq[String] = {
val originalCode = super.code
originalCode ++ this.getWrapperCode
}
}
}
This issue is solved in Slick 3.3:
https://github.com/slick/slick/pull/1889/
This solution provides def * and def ? and also supports plain SQL.

Map key not found error despite using option classes

I'm new to the concept of using the Option type but I've tried to use it multiple places in this class to avoid these errors.
The following class is used to store data.
class InTags(val tag35: Option[String], val tag11: Option[String], val tag_109: Option[String], val tag_58: Option[String])
This following code takes a string and converts it into a Int -> String map by seperating on an equals sign.
val message= FIXMessage("8=FIX.4.29=25435=D49=REDACTED56=REDACTED115=REDACTED::::::::::CENTRAL34=296952=20151112-17:11:1111=Order7203109=CENTRAL1=TestAccount63=021=155=CSCO48=CSCO.O22=5207=OQ54=160=20151112-17:11:1338=5000040=244=2815=USD59=047=A13201=CSCO.O13202=510=127
")
val tag58 = message.fields(Some(58)).getOrElse("???")
val in_messages= new InTags(message.fields(Some(35)), message.fields(Some(11)), message.fields(Some(109)), Some(tag58))
println(in_messages.tag_109.getOrElse("???"))
where the FIXMessage object is defined as follows:
class FIXMessage (flds: Map[Option[Int], Option[String]]) {
val fields = flds
def this(fixString: String) = this(FIXMessage.parseFixString(Some(fixString)))
override def toString: String = {
fields.toString
}
}
object FIXMessage{
def apply(flds: Map[Option[Int], Option[String]]) = {
new FIXMessage(flds)
}
def apply(flds: String) = {
new FIXMessage(flds)
}
def parseFixString(fixString: Option[String]): Map[Option[Int], Option[String]] = {
val str = fixString.getOrElse("str=???")
val parts = str.split(1.toChar)
(for {
part <- parts
p = part.split('=')
} yield Some(p(0).toInt) -> Some(p(1))).toMap
}
}
The error I'm getting is ERROR key not found: Some(58) but doesnt the option class handle this? Which basically means that the string passed into the FIXMessage object doesnt contain a substring of the format 58=something(which is true) What is the best way to proceed?
You are using the apply method in Map, which returns the value or throw NoSuchElementException if key is not present.
Instead you could use getOrElse like
message.fields.getOrElse(Some(58), Some("str"))

Scala: Return multiple data types from function

This is somewhat of a theoretical question but something I might want to do. Is it possible to return multiple data data types from a Scala function but limit the types that are allowed? I know I can return one type by specifying it, or I can essentially allow any data type by not specifying the return type, but I would like to return 1 of 3 particular data types to preserve a little bit of type safety. Is there a way to write an 'or' in the return type like:
def myFunc(input:String): [Int || String] = { ...}
The main context for this is trying to write universal data loading script. Some of my users use Spark, some Scalding, and who knows what will be next. I want my users to be able to use a generic loading script that might return a RichPipe, RDD, or some other data format depending on the framework they are using, but I don't want to throw type safety completely out the window.
You can use the Either type provided by the Scala Library.
def myFunc(input:String): Either[Int, String] = {
if (...)
Left(42) // return an Int
else
Right("Hello, world") // return a String
}
You can use more than two types by nesting, for instance Either[A,Either[B,C]].
As already noted in comments you'd better use Either for this task, but if you really want it, you can use implicits
object IntOrString {
implicit def fromInt(i: Int): IntOrString = new IntOrString(None, Some(i))
implicit def fromString(s: String): IntOrString = new IntOrString(Some(s), None)
}
case class IntOrString(str: Option[String], int: Option[Int])
implicit def IntOrStringToInt(v: IntOrString): Int = v.int.get
implicit def IntOrStringToStr(v: IntOrString): String = v.str.get
def myFunc(input:String): IntOrString = {
if(input.isEmpty) {
1
} else {
"test"
}
}
val i: Int = myFunc("")
val s: String = myFunc("123")
//exception
val ex: Int = myFunc("123")
I'd make the typing by the user less implicit and more explicit. Here are three examples:
def loadInt(input: String): Int = { ... }
def loadString(input: String): String = { ... }
That's nice and simple. Alternatively, we can have a function that returns the appropriate curried function using an implicit context:
def loader[T]()(implicit context: String): String => T = {
context match {
case "RDD" => loadInt _ // or loadString _
}
}
Then the user would:
implicit val context: String = "RDD" // simple example
val loader: String => Int = loader()
loader(input)
Alternatively, can turn it into an explicit parameter:
val loader: String => Int = loader("RDD")

Scala Reflection to update a case class val

I'm using scala and slick here, and I have a baserepository which is responsible for doing the basic crud of my classes.
For a design decision, we do have updatedTime and createdTime columns all handled by the application, and not by triggers in database. Both of this fields are joda DataTime instances.
Those fields are defined in two traits called HasUpdatedAt, and HasCreatedAt, for the tables
trait HasCreatedAt {
val createdAt: Option[DateTime]
}
case class User(name:String,createdAt:Option[DateTime] = None) extends HasCreatedAt
I would like to know how can I use reflection to call the user copy method, to update the createdAt value during the database insertion method.
Edit after #vptron and #kevin-wright comments
I have a repo like this
trait BaseRepo[ID, R] {
def insert(r: R)(implicit session: Session): ID
}
I want to implement the insert just once, and there I want to createdAt to be updated, that's why I'm not using the copy method, otherwise I need to implement it everywhere I use the createdAt column.
This question was answered here to help other with this kind of problem.
I end up using this code to execute the copy method of my case classes using scala reflection.
import reflect._
import scala.reflect.runtime.universe._
import scala.reflect.runtime._
class Empty
val mirror = universe.runtimeMirror(getClass.getClassLoader)
// paramName is the parameter that I want to replacte the value
// paramValue is the new parameter value
def updateParam[R : ClassTag](r: R, paramName: String, paramValue: Any): R = {
val instanceMirror = mirror.reflect(r)
val decl = instanceMirror.symbol.asType.toType
val members = decl.members.map(method => transformMethod(method, paramName, paramValue, instanceMirror)).filter {
case _: Empty => false
case _ => true
}.toArray.reverse
val copyMethod = decl.declaration(newTermName("copy")).asMethod
val copyMethodInstance = instanceMirror.reflectMethod(copyMethod)
copyMethodInstance(members: _*).asInstanceOf[R]
}
def transformMethod(method: Symbol, paramName: String, paramValue: Any, instanceMirror: InstanceMirror) = {
val term = method.asTerm
if (term.isAccessor) {
if (term.name.toString == paramName) {
paramValue
} else instanceMirror.reflectField(term).get
} else new Empty
}
With this I can execute the copy method of my case classes, replacing a determined field value.
As comments have said, don't change a val using reflection. Would you that with a java final variable? It makes your code do really unexpected things. If you need to change the value of a val, don't use a val, use a var.
trait HasCreatedAt {
var createdAt: Option[DateTime] = None
}
case class User(name:String) extends HasCreatedAt
Although having a var in a case class may bring some unexpected behavior e.g. copy would not work as expected. This may lead to preferring not using a case class for this.
Another approach would be to make the insert method return an updated copy of the case class, e.g.:
trait HasCreatedAt {
val createdAt: Option[DateTime]
def withCreatedAt(dt:DateTime):this.type
}
case class User(name:String,createdAt:Option[DateTime] = None) extends HasCreatedAt {
def withCreatedAt(dt:DateTime) = this.copy(createdAt = Some(dt))
}
trait BaseRepo[ID, R <: HasCreatedAt] {
def insert(r: R)(implicit session: Session): (ID, R) = {
val id = ???//insert into db
(id, r.withCreatedAt(??? /*now*/))
}
}
EDIT:
Since I didn't answer your original question and you may know what you are doing I am adding a way to do this.
import scala.reflect.runtime.universe._
val user = User("aaa", None)
val m = runtimeMirror(getClass.getClassLoader)
val im = m.reflect(user)
val decl = im.symbol.asType.toType.declaration("createdAt":TermName).asTerm
val fm = im.reflectField(decl)
fm.set(??? /*now*/)
But again, please don't do this. Read this stackoveflow answer to get some insight into what it can cause (vals map to final fields).