What is the connection between norminv and normrnd? - matlab

If I just want to calculate a standard normal variable is there any difference between using:
samples=norminv(rand(N),0,1);
and
samples=normrnd(0,1,N,1);
Either in terms of processing time or convergence when used in a Monte Carlo simulation?
The reason I ask is that I want to use a quasi Monte Carlo technique like Halton numbers with norminv() to replicate normrnd(), but first I want to make sure I understand the relationship between them.
I guess one of the central questions is: how are the random numbers are generated in rand() and normrnd respectively? Is it the same method?
If they are entirely equivalent why the duplication?

Both approaches give the same distribution, by the theorem of inverse transformation (as you surely know). One important difference, though, is computation time:
N = 1e6;
tic
samples = norminv(rand(N,1),0,1);
toc
tic
samples = normrnd(0,1,N,1);
toc
tic
samples = randn(N,1);
toc
gives
Elapsed time is 0.171892 seconds.
Elapsed time is 0.039265 seconds.
Elapsed time is 0.029649 seconds.
So, even Matlab probably uses uniform random numbers internally to generate Gaussian random numbers, its implementation is more efficient in terms of speed than doing norminv(rand(...)) yourself.
Why is rand faster than normrnd? Because normrnd is just rand preceded with some input checking, and also, as noted in #chappjc's answer, lets you specify mean and standard deviation (but you don't seem to need that). (You can see normrnd source code by typing open normrnd).
Bottom line: I would use randn.

You get a uniform distribution with rand, and a normal distribution with randn.
Now, if the question is what is the relationship between normrnd and randn, the answer is that normrnd is a convenience function that takes the mean and standard deviation of the distribution as input arguments. That is, normrnd does the following:
r = randn(sizeOut) .* sigma + mu;
As for normrnd (using randn) vs. norminv (using rand), see Luis Mendo's answer (it will be the same distribution). And as I noted, you can skip normrnd entirely with the equation above.

Related

Optimizing huge amounts of calls of fsolve in Matlab

I'm solving a pair of non-linear equations for each voxel in a dataset of a ~billion voxels using fsolve() in MATLAB 2016b.
I have done all the 'easy' optimizations that I'm aware of. Memory localization is OK, I'm using parfor, the equations are in fairly numerically simple form. All discontinuities of the integral are fed to integral(). I'm using the Levenberg-Marquardt algorithm with good starting values and a suitable starting damping constant, it converges on average with 6 iterations.
I'm now at ~6ms per voxel, which is good, but not good enough. I'd need a order of magnitude reduction to make the technique viable. There's only a few things that I can think of improving before starting to hammer away at accuracy:
The splines in the equation are for quick sampling of complex equations. There are two for each equation, one is inside the 'complicated nonlinear equation'. They represent two equations, one which is has a large amount of terms but is smooth and has no discontinuities and one which approximates a histogram drawn from a spectrum. I'm using griddedInterpolant() as the editor suggested.
Is there a faster way to sample points from pre-calculated distributions?
parfor i=1:numel(I1)
sols = fsolve(#(x) equationPair(x, input1, input2, ...
6 static inputs, fsolve options)
output1(i) = sols(1); output2(i) = sols(2)
end
When calling fsolve, I'm using the 'parametrization' suggested by Mathworks to input the variables. I have a nagging feeling that defining a anonymous function for each voxel is taking a large slice of the time at this point. Is this true, is there a relatively large overhead for defining the anonymous function again and again? Do I have any way to vectorize the call to fsolve?
There are two input variables which keep changing, all of the other input variables stay static. I need to solve one equation pair for each input pair so I can't make it a huge system and solve it at once. Do I have any other options than fsolve for solving pairs of nonlinear equations?
If not, some of the static inputs are the fairly large. Is there a way to keep the inputs as persistent variables using MATLAB's persistent, would that improve performance? I only saw examples of how to load persistent variables, how could I make it so that they would be input only once and future function calls would be spared from the assumedly largish overhead of the large inputs?
EDIT:
The original equations in full form look like:
Where:
and:
Everything else is known, solving for x_1 and x_2. f_KN was approximated by a spline. S_low (E) and S_high(E) are splines, the histograms they are from look like:
So, there's a few things I thought of:
Lookup table
Because the integrals in your function do not depend on any of the parameters other than x, you could make a simple 2D-lookup table from them:
% assuming simple (square) range here, adjust as needed
[x1,x2] = meshgrid( linspace(0, xmax, N) );
LUT_high = zeros(size(x1));
LUT_low = zeros(size(x1));
for ii = 1:N
LUT_high(:,ii) = integral(#(E) Fhi(E, x1(1,ii), x2(:,ii)), ...
0, E_high, ...
'ArrayValued', true);
LUT_low(:,ii) = integral(#(E) Flo(E, x1(1,ii), x2(:,ii)), ...
0, E_low, ...
'ArrayValued', true);
end
where Fhi and Flo are helper functions to compute those integrals, vectorized with scalar x1 and vector x2 in this example. Set N as high as memory will allow.
Those lookup tables you then pass as parameters to equationPair() (which allows parfor to distribute the data). Then just use interp2 in equationPair():
F(1) = I_high - interp2(x1,x2,LUT_high, x(1), x(2));
F(2) = I_low - interp2(x1,x2,LUT_low , x(1), x(2));
So, instead of recomputing the whole integral every time, you evaluate it once for the expected range of x, and reuse the outcomes.
You can specify the interpolation method used, which is linear by default. Specify cubic if you're really concerned about accuracy.
Coarse/Fine
Should the lookup table method not be possible for some reason (memory limitations, in case the possible range of x is too big), here's another thing you could do: split up the whole procedure in 2 parts, which I'll call coarse and fine.
The intent of the coarse method is to improve your initial estimates really quickly, but perhaps not so accurately. The quickest way to approximate that integral by far is via the rectangle method:
do not approximate S with a spline, just use the original tabulated data (so S_high/low = [S_high/low#E0, S_high/low#E1, ..., S_high/low#E_high/low]
At the same values for E as used by the S data (E0, E1, ...), evaluate the exponential at x:
Elo = linspace(0, E_low, numel(S_low)).';
integrand_exp_low = exp(x(1)./Elo.^3 + x(2)*fKN(Elo));
Ehi = linspace(0, E_high, numel(S_high)).';
integrand_exp_high = exp(x(1)./Ehi.^3 + x(2)*fKN(Ehi));
then use the rectangle method:
F(1) = I_low - (S_low * Elo) * (Elo(2) - Elo(1));
F(2) = I_high - (S_high * Ehi) * (Ehi(2) - Ehi(1));
Running fsolve like this for all I_low and I_high will then have improved your initial estimates x0 probably to a point close to "actual" convergence.
Alternatively, instead of the rectangle method, you use trapz (trapezoidal method). A tad slower, but possibly a bit more accurate.
Note that if (Elo(2) - Elo(1)) == (Ehi(2) - Ehi(1)) (step sizes are equal), you can further reduce the number of computations. In that case, the first N_low elements of the two integrands are identical, so the values of the exponentials will only differ in the N_low + 1 : N_high elements. So then just compute integrand_exp_high, and set integrand_exp_low equal to the first N_low elements of integrand_exp_high.
The fine method then uses your original implementation (with the actual integral()s), but then starting at the updated initial estimates from the coarse step.
The whole objective here is to try and bring the total number of iterations needed down from about 6 to less than 2. Perhaps you'll even find that the trapz method already provides enough accuracy, rendering the whole fine step unnecessary.
Vectorization
The rectangle method in the coarse step outlined above is easy to vectorize:
% (uses R2016b implicit expansion rules)
Elo = linspace(0, E_low, numel(S_low));
integrand_exp_low = exp(x(:,1)./Elo.^3 + x(:,2).*fKN(Elo));
Ehi = linspace(0, E_high, numel(S_high));
integrand_exp_high = exp(x(:,1)./Ehi.^3 + x(:,2).*fKN(Ehi));
F = [I_high_vector - (S_high * integrand_exp_high) * (Ehi(2) - Ehi(1))
I_low_vector - (S_low * integrand_exp_low ) * (Elo(2) - Elo(1))];
trapz also works on matrices; it will integrate over each column in the matrix.
You'd call equationPair() then using x0 = [x01; x02; ...; x0N], and fsolve will then converge to [x1; x2; ...; xN], where N is the number of voxels, and each x0 is 1×2 ([x(1) x(2)]), so x0 is N×2.
parfor should be able to slice all of this fairly easily over all the workers in your pool.
Similarly, vectorization of the fine method should also be possible; just use the 'ArrayValued' option to integral() as shown above:
F = [I_high_vector - integral(#(E) S_high(E) .* exp(x(:,1)./E.^3 + x(:,2).*fKN(E)),...
0, E_high,...
'ArrayValued', true);
I_low_vector - integral(#(E) S_low(E) .* exp(x(:,1)./E.^3 + x(:,2).*fKN(E)),...
0, E_low,...
'ArrayValued', true);
];
Jacobian
Taking derivatives of your function is quite easy. Here is the derivative w.r.t. x_1, and here w.r.t. x_2. Your Jacobian will then have to be a 2×2 matrix
J = [dF(1)/dx(1) dF(1)/dx(2)
dF(2)/dx(1) dF(2)/dx(2)];
Don't forget the leading minus sign (F = I_hi/lo - g(x) → dF/dx = -dg/dx)
Using one or both of the methods outlined above, you can implement a function to compute the Jacobian matrix and pass this on to fsolve via the 'SpecifyObjectiveGradient' option (via optimoptions). The 'CheckGradients' option will come in handy there.
Because fsolve usually spends the vast majority of its time computing the Jacobian via finite differences, manually computing a value for it manually will normally speed the algorithm up tremendously.
It will be faster, because
fsolve doesn't have to do extra function evaluations to do the finite differences
the convergence rate will increase due to the improved precision of the Jacobian
Especially if you use the rectangle method or trapz like above, you can reuse many of the computations you've already done for the function values themselves, meaning, even more speed-up.
Rody's answer was the correct one. Supplying the Jacobian was the single largest factor. Especially with the vectorized version, there were 3 orders of magnitude of difference in speed with the Jacobian supplied and not.
I had trouble finding information about this subject online so I'll spell it out here for future reference: It is possible to vectorize independant parallel equations with fsolve() with great gains.
I also did some work with inlining fsolve(). After supplying the Jacobian and being smarter about the equations, the serial version of my code was mostly overhead at ~1*10^-3 s per voxel. At that point most of the time inside the function was spent passing around a options -struct and creating error-messages which are never sent + lots of unused stuff assumedly for the other optimization functions inside the optimisation function (levenberg-marquardt for me). I succesfully butchered the function fsolve and some of the functions it calls, dropping the time to ~1*10^-4s per voxel on my machine. So if you are stuck with a serial implementation e.g. because of having to rely on the previous results it's quite possible to inline fsolve() with good results.
The vectorized version provided the best results in my case, with ~5*10^-5 s per voxel.

How to generate a 2D random vector in MATLAB?

I have a non-negative function f defined on a unit square S = [0,1] x [0,1] such that
My question is, how can I use MATLAB to generate a 2D random vector from S according to the probability density function f?
Rejection Sampling
The suggestion Luis Mendo made is very good because it applies to nearly all distribution functions. Based on this answer I wrote code for m.
An important point when using rejection sampling this way is that you must know the maximum of your pdf within the range. If you over-estimate the maximum your code will only run slower. If you under-estimate it it will create wrong numbers!
The idea is that you sample many uniform distributed points and accept depending on the probability density for the points.
pdf=#(x).5.*x(:,1)+3./2.*x(:,2);
maximum=2; %Right maximum for THIS EXAMPLE.
%If you are unable to determine the maximum of your
%function within the [0,1]x[0,1] range, please give an example.
result=[];
n=10;
while (size(result,1)<n)
%1. sample random point:
val=rand(1,2);
%2. Accept with probability pdf(val)/maximum
if rand<pdf(val)/maximum
%append to solution
result(end+1,:)=val;
end
end
I know that this solution is not a fast implementation, but I wanted to start with an implementation as simple as possible to make sure that the concept of rejection sampling becomes clear.
ICDF
Besides rejection sampling there is a different approach to address this issue on a more mathematical level, but you need to sit down and do some math first to end up with a better solution. For 1 dimensional distributions you typically sample using the ICDF (inverted cumulative density function) function simply using ICDF(rand(n,1)) to get random samples.
If you manage to do the math, you could instead for your PDF function define two functions ICDF1 (ICDF for the first dimension) and ICDF2 (ICDF for the second dimension) in matlab.
The first ICDF1 would map unifrom random distributed samples to sample values for the first dimension of your random distribution.
The second ICDF2 would map the output if ICDF1 and uniform distributed samples to your intended solution.
Here is some matlab code assuming you already defined ICDF1 and ICDF2
samples=ICDF1(rand(n,1));
samples(:,2)=ICDF2(samples,rand(n,1));
The great advantage of this solution is, that it does not reject any samples, being potentially much faster.

Obtaining the constant that makes the integral equal to zero in Matlab

I'm trying to code a MATLAB program and I have arrived at a point where I need to do the following. I have this equation:
I must find the value of the constant "Xcp" (greater than zero), that is the value that makes the integral equal to zero.
In order to do so, I have coded a loop in which the the value of Xcp advances with small increments on each iteration and the integral is performed and checked if it's zero, if it reaches zero the loop finishes and the Xcp is stored with this value.
However, I think this is not an efficient way to do this task. The running time increases a lot, because this loop is long and has the to perform the integral and the integration limits substitution every time.
Is there a smarter way to do this in Matlab to obtain a better code efficiency?
P.S.: I have used conv() to multiply both polynomials. Since cl(x) and (x-Xcp) are both polynomials.
EDIT: Piece of code.
p = [1 -Xcp]; % polynomial (x-Xcp)
Xcp=0.001;
i=1;
found=false;
while(i<=x_te && found~=true) % Xcp is upper bounded by x_te
int_cl_p = polyint(conv(cl,p));
Cm_cp=(-1/c^2)*diff(polyval(int_cl_p,[x_le,x_te]));
if(Cm_cp==0)
found=true;
else
Xcp=Xcp+0.001;
end
end
This is the code I used to run this section. Another problem is that I have to do it for different cases (different cl functions), for this reason the code is even more slow.
As far as I understood, you need to solve the equation for X_CP.
I suggest using symbolic solver for this. This is not the most efficient way for large polynomials, but for polynomials of degree 20 it takes less than 1 second. I do not claim that this solution is fastest, but this provides generic solution to the problem. If your polynomial does not change every iteration, then you can use this generic solution many times and not spend time for calculating integral.
So, generic symbolic solution in terms of xLE and xTE is obtained using this:
syms xLE xTE c x xCP
a = 1:20;
%//arbitrary polynomial of degree 20
cl = sum(x.^a.*randi([-100,100],1,20));
tic
eqn = -1/c^2 * int(cl * (x-xCP), x, xLE, xTE) == 0;
xCP = solve(eqn,xCP);
pretty(xCP)
toc
Elapsed time is 0.550371 seconds.
You can further use matlabFunction for finding the numerical solutions:
xCP_numerical = matlabFunction(xCP);
%// we then just plug xLE = 10 and xTE = 20 values into function
answer = xCP_numerical(10,20)
answer =
19.8038
The slight modification of the code can allow you to use this for generic coefficients.
Hope that helps
If you multiply by -1/c^2, then you can rearrange as
and integrate however you fancy. Since c_l is a polynomial order N, if it's defined in MATLAB using the usual notation for polyval, where coefficients are stored in a vector a such that
then integration is straightforward:
MATLAB code might look something like this
int_cl_p = polyint(cl);
int_cl_x_p = polyint([cl 0]);
X_CP = diff(polyval(int_cl_x_p,[x_le,x_te]))/diff(polyval(int_cl_p,[x_le,x_te]));

weighted correlation for case of matrix

i have question how to calculate weighted correlations for matrices,from wikipedia i have created three following codes
1.weighted mean calculation
function [y]= weighted_mean(x,w);
n=length(x);
%assume that weight vector and input vector have same length
sum=0.0;
sum_weight=0.0;
for i=1:n
sum=sum+ x(i)*w(i);
sum_weight=sum_weight+w(i);
end
y=sum/sum_weight;
end
2.weighted covariance
function result=cov_weighted(x,y,w)
n=length(x);
sum_covar=0.0;
sum_weight=0;
for i=1:n
sum_covar=sum_covar+w(i)*(x(i)-weighted_mean(x,w))*(y(i)-weighted_mean(y,w));
sum_weight=sum_weight+w(i);
end
result=sum_covar/sum_weight;
end
and finally weighted correlation
3.
function corr_weight=weighted_correlation(x,y,w);
corr_weight=cov_weighted(x,y,w)/sqrt(cov_weighted(x,x,w)*cov_weighted(y,y,w));
end
now i want to apply weighted correlation method for matrices,related to this link
http://www.mathworks.com/matlabcentral/fileexchange/20846-weighted-correlation-matrix/content/weightedcorrs.m
i did not understand anything how to apply,that why i have created my self,but need in case of input are matrices,thanks very much
#dato-datuashvili Maybe I am providing too much information...
1) I would like to stress that the evaluation of Weighted Correlation matrices are very uncommon. This happens because you have to provide beforehand the weights. Unless you have a clear reason to choose the weights, there is no clear way to provide them.
How can you tell that a measurement of your sample is more or less important than another measurement?
Having said that, the weights are up to you! Yo have to choose them!
So, people usually consider just the correlation matrix (no weights or all weights are the same e.g w_i=1).
If you have a clear way to choose good weights, just do not consider this part.
2) I understand that you want to test your code. So, in order to that, you have to have correlated random variables. How to generate them?
Multivariate normal distributions are the simplest case. See the wikipedia page about them: Multivariate Normal Distribution (see the item "Drawing values from the distribution". Wikipedia shows you how to generate the random numbers from this distribution using Choleski Decomposition). The 2-variate case is much simpler. See for instance Generate Correlated Normal Random Variables
The good news is that if you are using Matlab there is a function for you. See Matlab: Random numbers from the multivariate normal distribution.]
In order to use this function you have to provide the desired means and covariances. [Note that you are making the role of nature here. You are generating the data! In real life, you are going to apply your function to the real data. What I am trying to say is that this step is only useful for tests. Furthermore, pay attencion to the fact that in the Matlab function you are providing the variances and evaluating the correlations (covariances normalized by standard errors). In the 2-dimensional case (that is the case of your function it is possible to provide directly the correlation. See the page above that I provided to you of Math.Stackexchange]
3) Finally, you can apply them to your function. Generate X and Y from a normal multivarite distribution and provide the vector of weights w to your function corr_weight_correlation and you are done!
I hope I provide what you need!
Daniel
Update:
% From the matlab page
mu = [2 3];
SIGMA = [1 1.5; 1.5 3];
n=100;
[x,y] = mvnrnd(mu,SIGMA,n);
% Using your code
w=ones(n,1);
corr_weight=weighted_correlation(x,y,w); % Remember that Sigma is covariance and Corr_weight is correlation. In order to calculate the same thing, just use result=cov_weighted instead.

Goodness of fit with MATLAB and chi-square test

I would like to measure the goodness-of-fit to an exponential decay curve. I am using the lsqcurvefit MATLAB function. I have been suggested by someone to do a chi-square test.
I would like to use the MATLAB function chi2gof but I am not sure how I would tell it that the data is being fitted to an exponential curve
The chi2gof function tests the null hypothesis that a set of data, say X, is a random sample drawn from some specified distribution (such as the exponential distribution).
From your description in the question, it sounds like you want to see how well your data X fits an exponential decay function. I really must emphasize, this is completely different to testing whether X is a random sample drawn from the exponential distribution. If you use chi2gof for your stated purpose, you'll get meaningless results.
The usual approach for testing the goodness of fit for some data X to some function f is least squares, or some variant on least squares. Further, a least squares approach can be used to generate test statistics that test goodness-of-fit, many of which are distributed according to the chi-square distribution. I believe this is probably what your friend was referring to.
EDIT: I have a few spare minutes so here's something to get you started. DISCLAIMER: I've never worked specifically on this problem, so what follows may not be correct. I'm going to assume you have a set of data x_n, n = 1, ..., N, and the corresponding timestamps for the data, t_n, n = 1, ..., N. Now, the exponential decay function is y_n = y_0 * e^{-b * t_n}. Note that by taking the natural logarithm of both sides we get: ln(y_n) = ln(y_0) - b * t_n. Okay, so this suggests using OLS to estimate the linear model ln(x_n) = ln(x_0) - b * t_n + e_n. Nice! Because now we can test goodness-of-fit using the standard R^2 measure, which matlab will return in the stats structure if you use the regress function to perform OLS. Hope this helps. Again I emphasize, I came up with this off the top of my head in a couple of minutes, so there may be good reasons why what I've suggested is a bad idea. Also, if you know the initial value of the process (ie x_0), then you may want to look into constrained least squares where you bind the parameter ln(x_0) to its known value.