Is it possible to mix in a trait using apply? - scala

I have a trait, call it foo. I have a class, call it MyClass:
class MyClass(something: String) { ... }
I can do this:
val myStuff = new MyClass("hello") with foo
What I'd like to do, however, is have my class with a companion object and use apply to create an instance:
class MyClass(something: String) { ... }
object MyClass {
def apply(something: String) = {
new MyClass(something)
}
}
The problem is that the following code isn't valid:
val myStuff = MyClass("hello") with foo
This would use the apply to make an instance of MyClass, but the trait can't be used. Is there a way to do this?
My goal is in test - the trait (foo) contains overrides for a few things in MyClass that lets me use the trait as a data mock. It's precisely what I need, but I'd like to be able to do that without doing a "new." And since I want to mix this into my test code but not in production, putting the "with foo" inside of apply in the companion object isn't an option.
Can it be done?

No it can't be done with a companion object.
apply is like a place holder.
When you do MyClass("hello") with Foo is equivalent to apply("hello") with Foo
apply gets executed first in case of companion object. With class construct its different

Related

Create a companion object that mixes in a trait that defines a method which returns an object of the object's companion class

Abstract problem: Create a trait that can be mixed into the companion object of a class, to give that object a method that returns an object of that class.
Concrete problem: I'm trying to create a bunch of classes for use with RESTful service calls, that know how to serialize and de-serialize themselves, like so:
case class Foo
(
var bar : String,
var blip : String
)
extends SerializeToJson
object Foo extends DeserializeFromJson
The intended usage is like so:
var f = Foo( "abc","123" )
var json = f.json
var newF = Foo.fromJson( json )
I'm using Genson to do the serialization/deserialization, which I access through a global object:
object JSON {
val parser = new ScalaGenson( new GensonBuilder() <...> )
}
Then I define the traits like so:
trait SerializeToJson {
def json : String = JSON.parser.toJson(this)
}
trait DeserializeFromJson[T <: DeserializeFromJson[T]] {
def fromJson( json : String ) : T = JSON.parser.fromJson( json )
}
This compiles. But this does not:
object Foo extends DeserializeFromJson[Foo]
I get the following error message:
type arguments [Foo] do not conform to trait DeserializeFromJson's
type parameter bounds [T <: DeserializeFromJson[T]]
I've tried creating a single trait, like so:
trait JsonSerialization[T <: JsonSerialization[T]] {
def json(implicit m: Manifest[JsonSerialization[T]]) : String =
JSON.parser.toJson(this)(m)
def fromJson( json : String ) : T =
JSON.parser.fromJson(json)
}
Now, if I just declare case class Foo (...) extends JsonSerialization[Foo] then I can't call Foo.fromJson because only an instance of class Foo has that method, not the companion object.
If I declare object Foo extend JsonSerialization[Foo] then I can compile and Foo has a .fromJson method. But at run time, the call to fromJson thinks that T is a JsonSerialization, and not a Foo, or so the following run-time error suggests:
java.lang.ClassCastException: scala.collection.immutable.HashMap$HashTrieMap cannot be cast to ...JsonSerialization
at ...JsonSerialization$class.fromJson(DataModel.scala:14)
at ...Foo.fromJson(Foo.scala:6)
And I can't declare object Foo extends Foo because I get
module extending its companion class cannot use default constructor arguments
So I can try adding constructor parameters, and that compiles and runs, but again the run-time type when it tries to deserialize is wrong, giving me the above error.
The only thing I've been able to do that works is to define fromJson in every companion object. But there MUST be a way to define it in a trait, and just mix in that trait. Right?
The solution is to simplify the type parameter for the trait.
trait DeserializeFromJson[T] {
def fromJson( json : String )(implicit m : Manifest[T]) : T =
JSON.parser.fromJson[T](json)(m)
}
Now, the companion object can extend DeserializeFromJson[Foo] and when I call Foo.fromJson( json ) it is able to tell Genson the correct type information so that an object of the appropriate type is created.
The problem is related to how implicits work.
Genson expects a Manifest that it will use to know to what type it must deserialize. This manifest is defined as implicit in Genson, meaning that it will try to get it from implicitly available manifests in the "caller code". However in your original version there is no Manifest[T] in DeserializeFromJson.
An alternate way would be to define the DeserializeFromJson like that (which will just produce a constructor with an implicit Manifest[T] argument):
abstract class DeserializeFromJson[T: Manifest] {
def fromJson( json : String ) : T = JSON.parser.fromJson[T](json)
}
object Foo extends DeserializeFromJson[Foo]
More generally if you don't bring more value by encapsulating a lib (in this case Genson), I think you shouldn't do that. As you basically reduce the features of Genson (now people can only work with strings) and introduce problems like the one you hit.
I think your type parameter constraint were originally wrong;
you had
trait DeserializeFromJson[T <: DeserializeFromJson[T]]
With your own answer, you fully relaxed it; you needed
trait DeserializeFromJson[T <: SerializeToJson]
...which the error was trying to tell you.
The need for the implicit Manifest (ClassTag now I believe) or context-bounds was on the money.
Would be nice for Scala to allow the specification of inheritance and type-parameter constraints based on class/trait and companion object relationship, given it is already aware, to some degree, when it comes to access-modifiers and implicit scopes.

Scala - restricting access to generic case classes

If I want a case class that cannot be manually constructed from outside a package, standard way would be something like this:
case class Foo private[p](a:A,b:B)
object Foo{
def apply(c:C) = {
require tit
require tat
Foo(c.a,c.b)
}
}
Any way to do that if the class looks like this:
case class Bar[T <: MySomething[T]] private[p](t:T)
or will I have to content myself with writing a def that takes care of the case class creation and must be explicitly called?
Edit
Seems I wasn't clear about what my problem was ...
How can I pass the required parameters to the object / apply function?

Object extends Trait, Class extends Trait, both have to implement method

I have the following setup:
trait A
{
def doSomething(): Unit;
}
object B extends A
{
override def doSomething(): Unit =
{
// Implementation
}
}
class B(creator: String) extends A
{
override def doSomething(): Unit =
{
B.doSomething() // Now this is just completely unnecessary, but the compiler of course insists upon implementing the method
}
}
Now you may wonder why I even do this, why I let the class extend the trait as well.
The problem is, that somewhere in the Program there is a Collection of A.
So somewhere:
private val aList: ListBuffer[A] = new ListBuffer[A]
and in there, I also have to put Bs (among other derivates, namely C and D)
So I can't just let the B-class not extend it.
As the implementation is the same for all instances, I want to use an Object.
But there is also a reason I really need this Object. Because there is a class:
abstract class Worker
{
def getAType(): A
def do(): Unit =
{
getAType().doSomething()
}
}
class WorkerA
{
def getAType(): A =
{
return B
}
}
Here the singleton/object of B gets returned. This is needed for the implementation of do() in the Worker.
To summarize:
The object B is needed because of the generic implementation in do() (Worker-Class) and also because doSomething() never changes.
The class B is needed because in the collection of the BaseType A there are different instances of B with different authors.
As both the object and the class have to implement the trait for above reasons I'm in kind of a dilemma here. I couldn't find a satisfying solution that looks neater.
So, my question is (It turns out as a non-native-speaker I should've clarified this more)
Is there any way to let a class extend a trait (or class) and say that any abstract-method implementation should be looked up in the object instead of the class, so that I must only implement "doSomething()" (from the trait) once (in the object)? As I said, the trait fulfills two different tasks here.
One being a BaseType so that the collection can get instances of the class. The other being a contract to ensure the doSomething()-method is there in every object.
So the Object B needs to extend the trait, because a trait is like a Java interface and every (!) Object B (or C, or D) needs to have that method. (So the only option I see -> define an interface/trait and make sure the method is there)
edit: In case anyone wonders. How I really solved the problem: I implemented two traits.
Now for one class (where I need it) I extend both and for the other I only extend one. So I actually never have to implement any method that is not absolutely necessary :)
As I wrote in the comment section, it's really unclear to me what you're asking.
However, looking at your code examples, it seems to me that trait A isn't really required.
You can use the types that already come with the Scala SDK:
object B extends (()=>Unit) {
def apply() { /* implementation */ }
}
Or, as a variant:
object B {
val aType:()=>Unit = {() => /* implementation */ }
}
In the first case, you can access the singleton instance with B, in the second case with B.aType.
In the second case, no explicit declaration of the apply method is needed.
Pick what you like.
The essential message is: You don't need a trait if you just define one simple method.
That's what Scala functions are for.
The list type might look like this:
private val aList:ListBuffer[()=>Unit] = ???
(By the way: Why not declare it as Seq[()=>Unit]? Is it important to the caller that it is a ListBuffer and not some other kind of sequence?)
Your worker might then look like this:
abstract class Worker {
def aType:()=>Unit // no need for the `get` prefix here, or the empty parameter list
def do() {aType()}
}
Note that now the Worker type has become a class that offers a method that invokes a function.
So, there is really no need to have a Worker class.
You can just take the function (aType) directly and invoke it, just so.
If you always want to call the implementation in object B, well - just do that then.
There is no need to wrap the call in instances of other types.
Your example class B just forwards the call to the B object, which is really unnecessary.
There is no need to even create an instance of B.
It does have the private member variable creator, but since it's never used, it will never be accessed in any way.
So, I would recommend to completely remove the class B.
All you need is the type ()=>Unit, which is exactly what you need: A function that takes no parameters and returns nothing.
If you get tired of writing ()=>Unit all the time, you can define a type alias, for example inside the package object.
Here is my recommentation:
type SideEffect = ()=>Unit
Then you can use SideEffect as an alias for ()=>Unit.
That's all I can make of it.
It looks to me that this is probably not what you were looking for.
But maybe this will help you a little bit along the way.
If you want to have a more concrete answer, it would be nice if you would clarify the question.
object B doesn't really have much to do with class B aside from some special rules.
If you wish to reuse that doSomething method you should just reuse the implementation from the object:
class B {
def doSomething() = B.doSomething()
}
If you want to specify object B as a specific instance of class B then you should do the following:
object B extends B("some particular creator") {
...
}
You also do not need override modifiers although they can be handy for compiler checks.
The notion of a companion object extending a trait is useful for defining behavior associated with the class itself (e.g. static methods) as opposed to instances of the class. In other words, it allows your static methods to implement interfaces. Here's an example:
import java.nio.ByteBuffer
// a trait to be implemented by the companion object of a class
// to convey the fixed size of any instance of that class
trait Sized { def size: Int }
// create a buffer based on the size information provided by the
// companion object
def createBuffer(sized: Sized): ByteBuffer = ByteBuffer.allocate(sized.size)
class MyClass(x: Long) {
def writeTo(buffer: ByteBuffer) { buffer.putLong(x) }
}
object MyClass extends Sized {
def size = java.lang.Long.SIZE / java.lang.Byte.SIZE
}
// create a buffer with correct sizing for MyClass whose companion
// object implements Sized. Note that we don't need an instance
// of MyClass to obtain sizing information.
val buf = createBuffer(MyClass)
// write an instance of MyClass to the buffer.
val c = new MyClass(42)
c.writeTo(buf)

In Scala is there a way to reference the Companion Object from within an instance of a Case Class?

In my specific case I have a (growing) library of case classes with a base trait (TKModel)
Then I have an abstract class (TKModelFactory[T <: TKModel]) which is extended by all companion objects.
So my companion objects all inherently know the type ('T') of "answers" they need to provide as well as the type of objects they "normally" accept for commonly implemented methods. (If I get lazy and cut and paste chunks of code to search and destroy this save my bacon a lot!) I do see warnings on the Internet at large however that any form of CompanionObject.method(caseClassInstance: CaseClass) is rife with "code smell" however. Not sure if they actually apply to Scala or not?
There does not however seem to be any way to declare anything in the abstract case class (TKModel) that would refer to (at runtime) the proper companion object for a particular instance of a case class. This results in my having to write (and edit) a few method calls that I want standard in each and every case class.
case class Track(id: Long, name: String, statusID: Long) extends TKModel
object Track extends TKModelFactory[Track]
How would I write something in TKModel such that new Track(1, "x", 1).someMethod() could actually call Track.objectMethod()
Yes I can write val CO = MyCompanionObject along with something like implicit val CO: ??? in the TKModel abstract class and make all the calls hang off of that value. Trying to find any incantation that makes the compiler happy for that however seems to be mission impossible. And since I can't declare that I can't reference it in any placeholder methods in the abstract class either.
Is there a more elegant way to simply get a reference to a case classes companion object?
My specific question, as the above has been asked before (but not yet answered it seems), is there a way to handle the inheritance of both the companion object and the case classes and find the reference such that I can code common method calls in the abstract class?
Or is there a completely different and better model?
If you change TKModel a bit, you can do
abstract class TKModel[T <: TKModel] {
...
def companion: TKModelFactory[T]
def someMethod() = companion.objectMethod()
}
case class Track(id: Long, name: String, statusID: Long) extends TKModel[Track] {
def companion = Track
}
object Track extends TKModelFactory[Track] {
def objectMethod() = ...
}
This way you do need to implement companion in each class. You can avoid this by implementing companion using reflection, something like (untested)
lazy val companion: TKModelFactory[T] = {
Class.forName(getClass.getName + "$").getField("MODULE$").
get(null).asInstanceOf[TKModelFactory[T]]
}
val is to avoid repeated reflection calls.
A companion object does not have access to the instance, but there is no reason the case class can't have a method that calls the companion object.
case class Data(value: Int) {
def add(data: Data) = Data.add(this,data)
}
object Data {
def add(d1: Data, d2: Data): Data = Data(d1.value + d2.value)
}
It's difficult. However you can create an implicit method in companion object. whenever you want to invoke your logic from instance, just trigger implicit rules and the implicit method will instantiate another class which will invoke whatever logic you desired.
I believe it's also possible to do this in generic ways.
You can implement this syntax as an extension method by defining an implicit class in the top-level abstract class that the companion objects extend:
abstract class TKModelFactory[T <: TKModel] {
def objectMethod(t: T)
implicit class Syntax(t: T) {
def someMethod() = objectMethod(t)
}
}
A call to new Track(1, "x", 1).someMethod() will then be equivalent to Track.objectMethod(new Track(1, "x", 1)).

How do I declare a constructor for an 'object' class type in Scala? I.e., a one time operation for the singleton

I know that objects are treated pretty much like singletons in scala. However, I have been unable to find an elegant way to specify default behavior on initial instantiation. I can accomplish this by just putting code into the body of the object declaration but this seems overly hacky. Using an apply doesn't really work because it can be called multiple times and doesn't really make sense for this use case.
Any ideas on how to do this?
Classes and objects both run the code in their body upon instantiation, by design. Why is this "hacky"? It's how the language is supposed to work. If you like extra braces, you can always use them (and they'll keep local variables from being preserved and world-viewable).
object Initialized {
// Initalization block
{
val someStrings = List("A","Be","Sea")
someStrings.filter(_.contains('e')).foreach(s => println("Contains e: " + s))
}
def doSomething { println("I was initialized before you saw this.") }
}
scala> Initialized.doSomething
Contains e: Be
Contains e: Sea
I was initialized before you saw this.
scala> Initialized.someStrings
<console>:9: error: value someStrings is not a member of object Initialized
Initialized.someStrings
Rex has it right, I just wanted to point out a pattern I use a lot, that saves you from having to use vars, while avoiding namespace pollution by intermediate values.
object Foo {
val somethingFooNeeds = {
val intermediate = expensiveCalculation
val something = transform(intermediate)
something
}
}
If it makes you feel better, you can create some class with protected constructor and object will create singleton of this class:
sealed class MyClass protected (val a: String, b: Int) {
def doStuff = a + b
}
object MyObject extends MyClass("Hello", b = 1)
Also notice, that sealed stops other classes and objects to extend MyClass and protected will not allow creation of other MyClass instances.
But I personally don't see any problems with some code in the body of the object. You can also create some method like init and just call it:
object MyObject {
init()
def init() {
...
}
}
The body of object and class declarations IS the default constructor and any code placed in there will be executed upon first reference, so that is exactly the way to do it.