Racket macro with infinite number of arguments - macros

I would like a macro that can take any number of arguments and return a list of each argument, like this:
(TEST first second third)
=> '(first second third)

Like so?
(define-syntax-rule (TEST . lst)
(quote lst))
(TEST first second third)
=> '(first second third)
or simply
(define-syntax-rule (TEST . lst)
'lst)

Here's another way, using define-syntax:
(define-syntax TEST
(syntax-rules ()
((_ . lst) 'lst)))
Of course you can quote the expression directly, it really isn't necessary to use a macro here:
'(first second third)

Related

How do I write a macro that will repeat a command?

I'm trying to write a macro that will let me streamline the definition of multiple top-level variables in one single expression.
The idea was to make it work similar to how let works:
(defparameters ((*foo* 42)
(*bar* 31)
(*baz* 99)))
I tried using the following, but it doesn't seem to do anything.
(defmacro defparameters (exprs)
(dolist (expr exprs)
(let ((name (car expr))
(exp (cadr expr)))
`(defparameter ,name ,exp))))
I've tried using macroexpand but it doesn't seem to expand at all.
What am I doing wrong? and how can I fix it?
The return value of a dolist is given by its optional third argument, so your macro returns the default of nil.
Macros only return one form, so when you have multiple things, such as your series of defparameters, you need to wrap them all in some form and return that. progn will be suitable here. For Example:
(defmacro defparameters (exprs)
`(progn ,#(loop for (name exp) in exprs
collect `(defparameter ,name ,exp))))

iterating through a list in racket

(define list45 (map number->string(build-list 1000 values)))
list45
(first (list45))
(rest (list45))
ERROR:
application: not a procedure;
expected a procedure that can be applied to arguments
I am trying to iterate through the list that i converted to strings. to do that i tried to use the first and rest functions to view everything in the list. Why am i getting errors for this?
Thanks
Just drop the parentheses around the list:
(first list45)
=> "0"
(rest list45)
=> '("1" "2" … "998" "999")
In Scheme, when you surround something between (), the interpreter evaluates that as a function application with no arguments. Given that list45 is not a function, the "application: not a procedure" error is raised. In Racket is very easy to iterate over the list:
(for ([e (in-list list45)])
(displayln e))
But if for some reason you want to use first and rest to traverse the list, here's one possibility, using explicit recursion:
(define (iterate lst)
(unless (empty? lst)
(displayln (first lst))
(iterate (rest lst))))
(iterate list45)

Call several functions with the same value

I have various functions and I want to call each function with the same value. For instance,
I have these functions:
(defun OP1 (arg) ( + 1 arg) )
(defun OP2 (arg) ( + 2 arg) )
(defun OP3 (arg) ( + 3 arg) )
And a list containing the name of each function:
(defconstant *OPERATORS* '(OP1 OP2 OP3))
So far, I'm trying:
(defun TEST (argument) (dolist (n *OPERATORS*) (n argument) ) )
I've tried using eval, mapcar, and apply, but these haven't worked.
This is just a simplified example; the program that I'm writing has eight functions that are needed to expand nodes in a search tree, but for the moment, this example should suffice.
Other answers have provided some idiomatic solutions with mapcar. One pointed out that you might want a list of functions (which *operators* isn't) instead of a list of symbols (which *operators* is), but it's OK in Common Lisp to funcall a symbol. It's probably more common to use some kind of mapping construction (e.g., mapcar) for this, but since you've provided code using dolist, I think it's worth looking at how you can do this iteratively, too. Let's cover the (probably more idiomatic) solution with mapping first, though.
Mapping
You have a fixed argument, argument, and you want to be able to take a function function and call it with that `argument. We can abstract this as a function:
(lambda (function)
(funcall function argument))
Now, we want to call this function with each of the operations that you've defined. This is simple to do with mapcar:
(defun test (argument)
(mapcar (lambda (function)
(funcall function argument))
*operators*))
Instead of operators, you could also write '(op1 op2 op3) or (list 'op1 'op2 'op3), which are lists of symbols, or (list #'op1 #'op2 #'op3) which is a list of functions. All of these work because funcall takes a function designator as its first argument, and a function designator is
an object that denotes a function and that is one of: a symbol (denoting the function named by that symbol in the global environment), or a function (denoting itself).
Iteratively
You can do this using dolist. The [documentation for actually shows that dolist has a few more tricks up its sleeve. The full syntax is from the documentation
dolist (var list-form [result-form]) declaration* {tag | statement}*
We don't need to worry about declarations here, and we won't be using any tags, but notice that optional result-form. You can specify a form to produce the value that dolist returns; you don't have to accept its default nil. The common idiom for collecting values into a list in an iterative loop is to push each value into a new list, and then return the reverse of that list. Since the new list doesn't share structure with anything else, we usually reverse it destructively using nreverse. Your loop would become
(defun test (argument)
(let ((results '()))
(dolist (op *operators* (nreverse results))
(push (funcall op argument) results))))
Stylistically, I don't like that let that just introduces a single value, and would probably use an &aux variable in the function (but this is a matter of taste, not correctness):
(defun test (argument &aux (results '()))
(dolist (op *operators* (nreverse results))
(push (funcall op argument) results)))
You could also conveniently use loop for this:
(defun test2 (argument)
(loop for op in *operators*
collect (funcall op argument)))
You can also do somewhat succinctly, but perhaps less readably, using do:
(defun test3a (argument)
(do ((results '() (list* (funcall (first operators) argument) results))
(operators *operators* (rest operators)))
((endp operators) (nreverse results))))
This says that on the first iteration, results and operators are initialized with '() and *operators*, respectively. The loop terminates when operators is the empty list, and whenever it terminates, the return value is (nreverse results). On successive iterations, results is a assigned new value, (list* (funcall (first operators) argument) results), which is just like pushing the next value onto results, and operators is updated to (rest operators).
FUNCALL works with symbols.
From the department of silly tricks.
(defconstant *operators* '(op1 op2 o3))
(defun test (&rest arg)
(setf (cdr arg) arg)
(mapcar #'funcall *operators* arg))
There's a library, which is almost mandatory in any anywhat complex project: Alexandria. It has many useful functions, and there's also something that would make your code prettier / less verbose and more conscious.
Say, you wanted to call a number of functions with the same value. Here's how you'd do it:
(ql:quickload "alexandria")
(use-package :alexandria)
(defun example-rcurry (value)
"Calls `listp', `string' and `numberp' with VALUE and returns
a list of results"
(let ((predicates '(listp stringp numberp)))
(mapcar (rcurry #'funcall value) predicates)))
(example-rcurry 42) ;; (NIL NIL T)
(example-rcurry "42") ;; (NIL T NIL)
(defun example-compose (value)
"Calls `complexp' with the result of calling `sqrt'
with the result of calling `parse-integer' on VALUE"
(let ((predicates '(complexp sqrt parse-integer)))
(funcall (apply #'compose predicates) value)))
(example-compose "0") ;; NIL
(example-compose "-1") ;; T
Functions rcurry and compose are from Alexandria package.

How to map a macro over a list - or - How to use macros to define data types

I like to build a REPL with my own datatypes, but I don't like to write all the same pattern functions over and over again.
So this is a nut, which bothers me.
I got my own set of primitive datatypes (define primitives '("mytrue" "myfalse" "mynumber" ...))
Also I have (define primitiveTesters (list "mytrue?" "myfalse?" "mynumber?" ... )
The problem now is, I just want to apply (map) or a macro to get the datatype? procedurces, which basically just checks if the car of record (mynumber . ( . )) exists.
So something similar like (mynumber? (car (mynumber.(1.))) => #t in the end. But for this I need (define mynumber? (lambda (...)(...))
My define-batching macro looks like this, but I just have no luck to infuse the <variable>.
(define-syntax define-batching
(syntax-rules ()
((_ value expr)(define value expr))
((_ value) value)
((_ value1 value2 ...) (begin (define value1 expr) (define-batching test2...)))
))
So have I reached a dead end of scheme ?
I've seen something similar, I think in Emacs Lisp.
What I am looking for in the end is:
(define checker '(audi? volkswagen? mercedes?))
(define datatype '(audi volkswagen mercedes))
(map define-checker checker datatype )
or
(define-checker (car checker) (car datatype))
If I understood the question right, you need a macro
to define your own type checkers?
Here is one way to do it:
(define-syntax define-checker
(syntax-rules ()
[(define-checker name tag)
(define (name object)
(and (list? object)
(not (null? object))
(eq? (car object) 'tag)))]))
(define-checker my-car? car)
(my-car? '(car audi black)) ; evaluates to #t
(my-car? '(truck ford pink)) ; evaluates to #f
Addendum:
If you write
(define checker '(audi? volkswagen? mercedes?))
(define datatype '(audi volkswagen mercedes))
the values will become available at runtime.
Therefore you need to a different approach.
You could for example write:
(define-checker+datatype (audi? audi) (volkswagen? volkswagen?))
Here is the code:
(define-syntax define-checker
(syntax-rules ()
[(define-checker name tag)
(define (name object)
(and (list? object)
(not (null? object))
(eq? (car object) 'tag)))]))
(define-syntax define-checkers+datatype
(syntax-rules ()
[(define-checkers+datatype (name tag) ...)
(begin
(define-checker name tag)
...)]))
(define-checkers+datatype (audi? audi) (wv? wv))
(audi? '(audi black))
define-syntax is hygienic, that means it cannot influence on parent environment, that means it cannot define symbols in it.
You may try to use er-, ir- macro-transformers which allow you to explicit renames symbols.
keywords to google in you scheme documentation are 'er-macro-transformet' and 'ir-macro-transformer'

Common Lisp Backquote/Backtick: How to Use?

I am having trouble with Lisp's backquote read macro. Whenever I try to write a macro that seems to require the use of embedded backquotes (e.g., ``(w ,x ,,y) from Paul Graham's ANSI Common Lisp, page 399), I cannot figure out how to write my code in a way that compiles. Typically, my code receives a whole chain of errors preceded with "Comma not inside a backquote." Can someone provide some guidelines for how I can write code that will evaluate properly?
As an example, I currently need a macro which takes a form that describes a rule in the form of '(function-name column-index value) and generates a predicate lambda body to determine whether the element indexed by column-index for a particular row satisfies the rule. If I called this macro with the rule '(< 1 2), I would want a lambda body that looks like the following to be generated:
(lambda (row)
(< (svref row 1) 2))
The best stab I can make at this is as follows:
(defmacro row-satisfies-rule (rule)
(let ((x (gensym)))
`(let ((,x ,rule))
(lambda (row)
(`,(car ,x) (svref row `,(cadr ,x)) `,(caddr ,x))))))
Upon evaluation, SBCL spews the following error report:
; in: ROW-SATISFIES-RULE '(< 1 2)
; ((CAR #:G1121) (SVREF ROW (CADR #:G1121)) (CADDR #:G1121))
;
; caught ERROR:
; illegal function call
; (LAMBDA (ROW) ((CAR #:G1121) (SVREF ROW (CADR #:G1121)) (CADDR #:G1121)))
; ==>
; #'(LAMBDA (ROW) ((CAR #:G1121) (SVREF ROW (CADR #:G1121)) (CADDR #:G1121)))
;
; caught STYLE-WARNING:
; The variable ROW is defined but never used.
; (LET ((#:G1121 '(< 1 2)))
; (LAMBDA (ROW) ((CAR #:G1121) (SVREF ROW (CADR #:G1121)) (CADDR #:G1121))))
;
; caught STYLE-WARNING:
; The variable #:G1121 is defined but never used.
;
; compilation unit finished
; caught 1 ERROR condition
; caught 2 STYLE-WARNING conditions
#<FUNCTION (LAMBDA (ROW)) {2497F245}>
How can I write macros to generate the code I need, and in particular, how do I implement row-satisfies-rule?
Using the ideas from Ivijay and discipulus, I have modified the macro so that it compiles and works, even allowing forms to be passed as the arguments. It runs a bit differently from my originally planned macro since I determined that including row as an argument made for smoother code. However, it is ugly as sin. Does anyone know how to clean it up so it performs the same without the call to eval?
(defmacro row-satisfies-rule-p (row rule)
(let ((x (gensym))
(y (gensym)))
`(let ((,x ,row)
(,y ,rule))
(destructuring-bind (a b c) ,y
(eval `(,a (svref ,,x ,b) ,c))))))
Also, an explanation of clean, Lispy ways to get macros to generate code to properly evaluate the arguments at runtime would be greatly appreciated.
First of all, Lisp macros have "destructuring" argument lists. This is a nice feature that means instead of having an argument list (rule) and then taking it apart with (car rule) (cadr rule) (caddr rule), you can simply make the argument list ((function-name column-index value)). That way the macro expects a list of three elements as an argument, and each element of the list is then bound to the corresponding symbol in the arguemnt list. You can use this or not, but it's usually more convenient.
Next, `, doesn't actually do anything, because the backquote tells Lisp not to evaluate the following expression and the comma tells it to evaluate it after all. I think you meant just ,(car x), which evaluates (car x). This isn't a problem anyway if you use destructuring arguments.
And since you're not introducing any new variables in the macro expansion, I don't think (gensym) is necessary in this case.
So we can rewrite the macro like this:
(defmacro row-satisfies-rule ((function-name column-index value))
`(lambda (row)
(,function-name (svref row ,column-index) ,value)))
Which expands just how you wanted:
(macroexpand-1 '(row-satisfies-rule (< 1 2)))
=> (LAMBDA (ROW) (< (SVREF ROW 1) 2))
Hope this helps!
If you need the argument to be evaluated to get the rule set, then here's a nice way to do it:
(defmacro row-satisfies-rule (rule)
(destructuring-bind (function-name column-index value) (eval rule)
`(lambda (row)
(,function-name (svref row ,column-index) ,value))))
Here's an example:
(let ((rules '((< 1 2) (> 3 4))))
(macroexpand-1 '(row-satisfies-rule (car rules))))
=> (LAMBDA (ROW) (< (SVREF ROW 1) 2))
just like before.
If you want to include row in the macro and have it give you your answer straightaway instead of making a function to do that, try this:
(defmacro row-satisfies-rule-p (row rule)
(destructuring-bind (function-name column-index value) rule
`(,function-name (svref ,row ,column-index) ,value)))
Or if you need to evaluate the rule argument (e.g. passing '(< 1 2) or (car rules) instead of (< 1 2)) then just use (destructuring-bind (function-name column-index value) (eval rule)
Actually, a function seems more appropriate than a macro for what you're trying to do. Simply
(defun row-satisfies-rule-p (row rule)
(destructuring-bind (function-name column-index value) rule
(funcall function-name (svref row column-index) value)))
works the same way as the macro and is much neater, without all the backquoting mess to worry about.
In general, it's bad Lisp style to use macros for things that can be accomplished by functions.
One thing to understand is that the backquote feature is completely unrelated to macros. It can be used for list creation. Since source code usually consists of lists, it may be handy in macros.
CL-USER 4 > `((+ 1 2) ,(+ 2 3))
((+ 1 2) 5)
The backquote introduces a quoted list. The comma does the unquote: the expression after the comma is evaluated and the result inserted. The comma belongs to the backquote: the comma is only valid inside a backquote expression.
Note also that this is strictly a feature of the Lisp reader.
Above is basically similar to:
CL-USER 5 > (list '(+ 1 2) (+ 2 3))
((+ 1 2) 5)
This creates a new list with the first expression (not evaluated, because quoted) and the result of the second expression.
Why does Lisp provide backquote notation?
Because it provides a simple template mechanism when one wants to create lists where most of the elements are not evaluated, but a few are. Additionally the backquoted list looks similar to the result list.
you don't need nested backquotes to solve this problem. Also, when it's a macro, you don't have to quote your arguments. So (row-satisfies-rule (< 1 2)) is lispier than (row-satisfies-rule '(< 1 2)).
(defmacro row-satisfies-rule (rule)
(destructuring-bind (function-name column-index value) rule
`(lambda (row)
(,function-name (svref row ,column-index) ,value))))
will solve the problem for all calls in the first form. Solving the problem when in the second form is left as an exercise.