Related
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
I've been hearing things about NoSQL and that it may eventually become the replacement for SQL DB storage methods due to the fact that DB interaction is often a bottle neck for speed on the web.
So I just have a few questions:
What exactly is it?
How does it work?
Why would it be better than using a SQL Database? And how much better is it?
Is the technology too new to start implementing yet or is it worth taking a look into?
There is no such thing as NoSQL!
NoSQL is a buzzword.
For decades, when people were talking about databases, they meant relational databases. And when people were talking about relational databases, they meant those you control with Edgar F. Codd's Structured Query Language. Storing data in some other way? Madness! Anything else is just flatfiles.
But in the past few years, people started to question this dogma. People wondered if tables with rows and columns are really the only way to represent data. People started thinking and coding, and came up with many new concepts how data could be organized. And they started to create new database systems designed for these new ways of working with data.
The philosophies of all these databases were different. But one thing all these databases had in common, was that the Structured Query Language was no longer a good fit for using them. So each database replaced SQL with their own query languages. And so the term NoSQL was born, as a label for all database technologies which defy the classic relational database model.
So what do NoSQL databases have in common?
Actually, not much.
You often hear phrases like:
NoSQL is scalable!
NoSQL is for BigData!
NoSQL violates ACID!
NoSQL is a glorified key/value store!
Is that true? Well, some of these statements might be true for some databases commonly called NoSQL, but every single one is also false for at least one other. Actually, the only thing NoSQL databases have in common, is that they are databases which do not use SQL. That's it. The only thing that defines them is what sets them apart from each other.
So what sets NoSQL databases apart?
So we made clear that all those databases commonly referred to as NoSQL are too different to evaluate them together. Each of them needs to be evaluated separately to decide if they are a good fit to solve a specific problem. But where do we begin? Thankfully, NoSQL databases can be grouped into certain categories, which are suitable for different use-cases:
Document-oriented
Examples: MongoDB, CouchDB
Strengths: Heterogenous data, working object-oriented, agile development
Their advantage is that they do not require a consistent data structure. They are useful when your requirements and thus your database layout changes constantly, or when you are dealing with datasets which belong together but still look very differently. When you have a lot of tables with two columns called "key" and "value", then these might be worth looking into.
Graph databases
Examples: Neo4j, GiraffeDB.
Strengths: Data Mining
While most NoSQL databases abandon the concept of managing data relations, these databases embrace it even more than those so-called relational databases.
Their focus is at defining data by its relation to other data. When you have a lot of tables with primary keys which are the primary keys of two other tables (and maybe some data describing the relation between them), then these might be something for you.
Key-Value Stores
Examples: Redis, Cassandra, MemcacheDB
Strengths: Fast lookup of values by known keys
They are very simplistic, but that makes them fast and easy to use. When you have no need for stored procedures, constraints, triggers and all those advanced database features and you just want fast storage and retrieval of your data, then those are for you.
Unfortunately they assume that you know exactly what you are looking for. You need the profile of User157641? No problem, will only take microseconds. But what when you want the names of all users who are aged between 16 and 24, have "waffles" as their favorite food and logged in in the last 24 hours? Tough luck. When you don't have a definite and unique key for a specific result, you can't get it out of your K-V store that easily.
Is SQL obsolete?
Some NoSQL proponents claim that their favorite NoSQL database is the new way of doing things, and SQL is a thing of the past.
Are they right?
No, of course they aren't. While there are problems SQL isn't suitable for, it still got its strengths. Lots of data models are simply best represented as a collection of tables which reference each other. Especially because most database programmers were trained for decades to think of data in a relational way, and trying to press this mindset onto a new technology which wasn't made for it rarely ends well.
NoSQL databases aren't a replacement for SQL - they are an alternative.
Most software ecosystems around the different NoSQL databases aren't as mature yet. While there are advances, you still haven't got supplemental tools which are as mature and powerful as those available for popular SQL databases.
Also, there is much more know-how for SQL around. Generations of computer scientists have spent decades of their careers into research focusing on relational databases, and it shows: The literature written about SQL databases and relational data modelling, both practical and theoretical, could fill multiple libraries full of books. How to build a relational database for your data is a topic so well-researched it's hard to find a corner case where there isn't a generally accepted by-the-book best practice.
Most NoSQL databases, on the other hand, are still in their infancy. We are still figuring out the best way to use them.
What exactly is it?
On one hand, a specific system, but it has also become a generic word for a variety of new data storage backends that do not follow the relational DB model.
How does it work?
Each of the systems labelled with the generic name works differently, but the basic idea is to offer better scalability and performance by using DB models that don't support all the functionality of a generic RDBMS, but still enough functionality to be useful. In a way it's like MySQL, which at one time lacked support for transactions but, exactly because of that, managed to outperform other DB systems. If you could write your app in a way that didn't require transactions, it was great.
Why would it be better than using a SQL Database? And how much better is it?
It would be better when your site needs to scale so massively that the best RDBMS running on the best hardware you can afford and optimized as much as possible simply can't keep up with the load. How much better it is depends on the specific use case (lots of update activity combined with lots of joins is very hard on "traditional" RDBMSs) - could well be a factor of 1000 in extreme cases.
Is the technology too new to start implementing yet or is it worth taking a look into?
Depends mainly on what you're trying to achieve. It's certainly mature enough to use. But few applications really need to scale that massively. For most, a traditional RDBMS is sufficient. However, with internet usage becoming more ubiquitous all the time, it's quite likely that applications that do will become more common (though probably not dominant).
Since someone said that my previous post was off-topic, I'll try to compensate :-) NoSQL is not, and never was, intended to be a replacement for more mainstream SQL databases, but a couple of words are in order to get things in the right perspective.
At the very heart of the NoSQL philosophy lies the consideration that, possibly for commercial and portability reasons, SQL engines tend to disregard the tremendous power of the UNIX operating system and its derivatives.
With a filesystem-based database, you can take immediate advantage of the ever-increasing capabilities and power of the underlying operating system, which have been steadily increasing for many years now in accordance with Moore's law. With this approach, many operating-system commands become automatically also "database operators" (think of "ls" "sort", "find" and the other countless UNIX shell utilities).
With this in mind, and a bit of creativity, you can indeed devise a filesystem-based database that is able to overcome the limitations of many common SQL engines, at least for specific usage patterns, which is the whole point behind NoSQL's philosophy, the way I see it.
I run hundreds of web sites and they all use NoSQL to a greater or lesser extent. In fact, they do not host huge amounts of data, but even if some of them did I could probably think of a creative use of NoSQL and the filesystem to overcome any bottlenecks. Something that would likely be more difficult with traditional SQL "jails". I urge you to google for "unix", "manis" and "shaffer" to understand what I mean.
If I recall correctly, it refers to types of databases that don't necessarily follow the relational form. Document databases come to mind, databases without a specific structure, and which don't use SQL as a specific query language.
It's generally better suited to web applications that rely on performance of the database, and don't need more advanced features of Relation Database Engines. For example, a Key->Value store providing a simple query by id interface might be 10-100x faster than the corresponding SQL server implementation, with a lower developer maintenance cost.
One example is this paper for an OLTP Tuple Store, which sacrificed transactions for single threaded processing (no concurrency problem because no concurrency allowed), and kept all data in memory; achieving 10-100x better performance as compared to a similar RDBMS driven system. Basically, it's moving away from the 'One Size Fits All' view of SQL and database systems.
In practice, NoSQL is a database system which supports fast access to large binary objects (docs, jpgs etc) using a key based access strategy. This is a departure from the traditional SQL access which is only good enough for alphanumeric values. Not only the internal storage and access strategy but also the syntax and limitations on the display format restricts the traditional SQL. BLOB implementations of traditional relational databases too suffer from these restrictions.
Behind the scene it is an indirect admission of the failure of the SQL model to support any form of OLTP or support for new dataformats. "Support" means not just store but full access capabilities - programmatic and querywise using the standard model.
Relational enthusiasts were quick to modify the defnition of NoSQL from Not-SQL to Not-Only-SQL to keep SQL still in the picture! This is not good especially when we see that most Java programs today resort to ORM mapping of the underlying relational model. A new concept must have a clearcut definition. Else it will end up like SOA.
The basis of the NoSQL systems lies in the random key - value pair. But this is not new. Traditional database systems like IMS and IDMS did support hashed ramdom keys (without making use of any index) and they still do. In fact IDMS already has a keyword NONSQL where they support SQL access to their older network database which they termed as NONSQL.
It's like Jacuzzi: both a brand and a generic name. It's not just a specific technology, but rather a specific type of technology, in this case referring to large-scale (often sparse) "databases" like Google's BigTable or CouchDB.
NoSQL the actual program appears to be a relational database implemented in awk using flat files on the backend. Though they profess, "NoSQL essentially has no arbitrary limits, and can work where other products can't. For example there is no limit on data field size, the number of columns, or file size" , I don't think it is the large scale database of the future.
As Joel says, massively scalable databases like BigTable or HBase, are much more interesting. GQL is the query language associated with BigTable and App Engine. It's largely SQL tweaked to avoid features Google considers bottle-necks (like joins). However, I haven't heard this referred to as "NoSQL" before.
NoSQL is a database system which doesn't use string based SQL queries to fetch data.
Instead you build queries using an API they will provide, for example Amazon DynamoDB is a good example of a NoSQL database.
NoSQL databases are better for large applications where scalability is important.
Does NoSQL mean non-relational database?
Yes, NoSQL is different from RDBMS and OLAP. It uses looser consistency models than traditional relational databases.
Consistency models are used in distributed systems like distributed shared memory systems or distributed data store.
How it works internally?
NoSQL database systems are often highly optimized for retrieval and appending operations and often offer little functionality beyond record storage (e.g. key-value stores). The reduced run-time flexibility compared to full SQL systems is compensated by marked gains in scalability and performance for certain data models.
It can work on Structured and Unstructured Data. It uses Collections instead of Tables
How do you query such "database"?
Watch SQL vs NoSQL: Battle of the Backends; it explains it all.
I have a client who understands that his data model is a directed acyclic graph. We've been working with collections of nodes and an intermediate table of edges, and the performance has been pretty good. We have less than 100,000 data nodes in the current implementation, although that may grow by one or two orders of magnitude. He's recently become convinced that, since we have a graph, a graph database (like Neo4J or Titan) would be "better."
What problems does a graph-oriented database actually solve that cannot be solved with SQL, or that requires much more heavy lifting from the SQL client? From what I can see, path discovery appears to be it, but that can't be the whole story.
In a relational database, nodes and edges will be related by some value they have in common. Searching for a node or edge will generally involve querying an index for this value.
In a graph database, nodes and edges are related directly by the same sort of internal database structures a relational database uses to maintain the internal structure of an index. So finding an edge from a node or a node from an edge is more like going one level deep in a relational index regardless of the number of nodes; while if you have millions of nodes in a relational database the index would be several levels deep.
actually its true, just Like mongo has "geo spacial" database features built in, so it doesnt have to process as much as if you wanted to do it with mysql. The two databases you mentioned (ive worked with titan) are just better for graphing and it wont be so harsh on your php or db statements.
In short, don't fix it if it's not broken. If the advantage is not clear to you or your client, just weight the cost of migrating against this unclear benefit of a graph database.
Having no experience with the aforementioned graph databases, I can only assume that what you could gain from databases like that is faster development as your database will be a better fit for the type of data that you have. I have been working with MongoDB a lot and the cherry on the cake for me has been development speed due to the simplicity of querying/writing to the database, followed by much richer document structures without having to define any schemas. You also get some amazing features like super simple replication, automatic failover, automatic sharding etc but in your case with just 100k documents you are not likely to think about this kind of problems any time soon. All the mainstream relational databases can run on a small server and perform well with that amount of docs.
Looking at options for an embedded NoSQL database written in Java, graph databases come up. What is a graph database (especially in contrast to a key-value store and a document-oriented database) and when would I use one (and when not)?
I learned a little bit about them in school (long time ago). Relational hadn't quite taken over the world yet, but it was close, so graph databases got a cursory mention. IIRC they were pretty much dead at the time. I'm not sure how informative this will really be, but I'll put it out there in case it helps somebody.
Basically, if what I recall is true, a graph database is essentially a graph. You retrieve data (nodes) from the graph, and then to find related information, you would traverse links (edges) to related data in the graph structure.
Other than the obvious case where your data is graph-like and it might be faster/more natural to use, I can't recall any advantages. I don't recall any of the disadvantages, but I would suspect that it might do poorly with with the sorts of things that relational databases do well (i.e. cranking through large sets of tuples).
Several sources available to answer the "what" question, including this:
http://www.infinitegraph.com/what-is-a-graph-database.html
When should you use a graph database?
If your data contains a lot of many-to-many relationships, if
recursive self-joins are too costly or limiting to your application
and scaling needs, and/or your primary objective is quickly finding
connections, patterns and relationships between the objects in your
data.
Graph Databases are useful in scenarios where the information has an inherent graph-like nature such as social networks, bibliographical databases like Wikipedia, fraud detection, media analysis, recommendation, biological networks analysis, ... In these scenarios, it is not likely to obtain only a list of results but a set of entities that are satisfying a given constraint.
Graph databases are useful because:
Relationships between entities are implicit in the model
They are more flexible to manage unknown or dynamic schemas
Favor structural and navigational queries
They are more efficient solving network operations
Does it make sense to break up the data model of an application into different database systems? For example, the application stores all user data and relationships in a graph database (ideal for storing relationships), while storing other data in a document database, such as CouchDB or MongoDB? This would require the user graph database to reference unique ids in the document databases and vice versa.
Is this over complicating the data model and application? Or is this using the best uses of both types of database systems for scaling your application?
It definitely can make sense and depends fully on the requirements of your application. If you can use other database systems for things in which they are really good at.
Take for example full text search. Of course you can do more or less complex full text searches with a relational database like MySql. But there are systems like e.g. Lucene/Solr which are optimized for such things and can search fast in millions of documents. So you could use these systems for their special task (here: make a nifty full text search), then you return the identifiers and maybe load the relational structured data from the RDBMS.
Or CouchDB. I use couchDB in some projects as a caching systems. In combination with a relational database. Of course I need to care about consistency, but it it's definitely worth the effort. It pushed performance in the projects a lot and decreases for example load on the server from 2 to 0.2. :)
Something like this is for instance called cross-store persistence. As you mentioned you would store certain data in your relational database, social relationships in a graphdb, user-generated data (documents) in a document-db and user provided multimedia files (pictures, audio, video) in a blob-store like S3.
It is mainly about looking at the use-cases and making sure that from wherever you need it you might access the "primary" or index key of each store (back and forth). You can encapsulate the actual lookup in your domain or dao layer.
Some frameworks like the Spring Data projects provide some initial kind of cross-store persistence out of the box, mostly integrating JPA with a different NOSQL datastore. For instance Spring Data Graph allows it to store your entities in JPA and add social graphs or other highly interconnected data as a secondary concern and leverage a graphdb for the typical traversal and other graph operations (e.g. ranking, suggestions etc.)
Another term for this is polyglot persistence.
Here are two contrary positions on the question:
Pro:
"Contrary to that, I’m a big fan of polyglot persistence. This simply means using the right storage backend for each of your usecases. For example file storages, SQL, graph databases, data ware houses, in-memory databases, network caches, NoSQL. Today there are mostly two storages used, files and SQL databases. Both are not optimal for every usecase."
http://codemonkeyism.com/nosql-polyglott-persistence/
Con:
"I don’t think I need to say that I’m a proponent of polyglot persistence. And that I believe in Unix tools philosophy. But while adding more components to your system, you should realize that such a system complexity is “exploding” and so will operational costs grow too (nb: do you remember why Twitter started to into using Cassandra?) . Not to mention that the more components your system has the more attention and care must be invested figuring out critical aspects like overall system availability, latency, throughput, and consistency."
http://nosql.mypopescu.com/post/1529816758/why-redis-and-memcached-cassandra-lucene
What are the advantages of using NoSQL databases? I've read a lot about them lately, but I'm still unsure why I would want to implement one, and under what circumstances I would want to use one.
Relational databases enforces ACID. So, you will have schema based transaction oriented data stores. It's proven and suitable for 99% of the real world applications. You can practically do anything with relational databases.
But, there are limitations on speed and scaling when it comes to massive high availability data stores. For example, Google and Amazon have terabytes of data stored in big data centers. Querying and inserting is not performant in these scenarios because of the blocking/schema/transaction nature of the RDBMs. That's the reason they have implemented their own databases (actually, key-value stores) for massive performance gain and scalability.
NoSQL databases have been around for a long time - just the term is new. Some examples are graph, object, column, XML and document databases.
For your 2nd question: Is it okay to use both on the same site?
Why not? Both serves different purposes right?
NoSQL solutions are usually meant to solve a problem that relational databases are either not well suited for, too expensive to use (like Oracle) or require you to implement something that breaks the relational nature of your db anyway.
Advantages are usually specific to your usage, but unless you have some sort of problem modeling your data in a RDBMS I see no reason why you would choose NoSQL.
I myself use MongoDB and Riak for specific problems where a RDBMS is not a viable solution, for all other things I use MySQL (or SQLite for testing).
If you need a NoSQL db you usually know about it, possible reasons are:
client wants 99.999% availability on
a high traffic site.
your data makes
no sense in SQL, you find yourself
doing multiple JOIN queries for
accessing some piece of information.
you are breaking the relational
model, you have CLOBs that store
denormalized data and you generate
external indexes to search that data.
If you don't need a NoSQL solution keep in mind that these solutions weren't meant as replacements for an RDBMS but rather as alternatives where the former fails and more importantly that they are relatively new as such they still have a lot of bugs and missing features.
Oh, and regarding the second question it is perfectly fine to use any technology in conjunction with another, so just to be complete from my experience MongoDB and MySQL work fine together as long as they aren't on the same machine
Martin Fowler has an excellent video which gives a good explanation of NoSQL databases. The link goes straight to his reasons to use them, but the whole video contains good information.
You have large amounts of data - especially if you cannot fit it all on one physical server as NoSQL was designed to scale well.
Object-relational impedance mismatch - Your domain objects do not fit well in a relaitional database schema. NoSQL allows you to persist your data as documents (or graphs) which may map much more closely to your data model.
NoSQL is a database system where data is organized into the document (MongoDB), key-value pair (MemCache, Redis), and graph structure form(Neo4J).
Maybe there are possible questions and answer for "When to go for NoSQL":
Require flexible schema or deal with tree-like data?
Generally, in agile development we start designing systems without knowing all requirements upfront, whereas later on throughout the development database system may need to accommodate frequent design changes, showcasing MVP (Minimal Viable product).
Or you are dealing with a data schema that is dynamic in nature.
e.g. System logs, very precise example is AWS cloudtrail logs.
Data set is vast/big?
Yes NoSQL databases are the better candidate for applications where the database needs to manage millions or even billions of records without compromising performance and availability while may be trading for inconsistency(though modern databases are exception here where it allows tunable consistency over availability e.g. Casandra, Cloud provider databases CosmosDB, DynamoDB).
Trade-off between scaling over consistency
Unlike RDMS, NoSQL databases may make the dataset consistent across other nodes eventually which is the default behavior, but it's easy to scale in terms of performance and availability.
Example: This may be good for storing people who are online in the instant messaging app, API tokens in DB, and logging website traffic stats.
Performing Geolocation Operations:
MongoDB hash rich support for doing GeoQuerying & Geolocation operations. I really loved this feature of MongoDB. So does the PostresSQL but ease of implementation is something that depends on the use case
In nutshell, MongoDB is a great fit for applications where you can store dynamic structured data on a large scale.
Edits:
Updated the answer about the consistency of the database.
Some essential information is missing to answer the question: Which use cases must the database be able to cover? Do complex analyses have to be performed from existing data (OLAP) or does the application have to be able to process many transactions (OLTP)? What is the data structure? That is far from the end of question time.
In my view, it is wrong to make technology decisions on the basis of bold buzzwords without knowing exactly what is behind them. NoSQL is often praised for its scalability. But you also have to know that horizontal scaling (over several nodes) also has its price and is not free. Then you have to deal with issues like eventual consistency and define how to resolve data conflicts if they cannot be resolved at the database level. However, this applies to all distributed database systems.
The joy of the developers with the word "schema less" at NoSQL is at the beginning also very big. This buzzword is quickly disenchanted after technical analysis, because it correctly does not require a schema when writing, but comes into play when reading. That is why it should correctly be "schema on read". It may be tempting to be able to write data at one's own discretion. But how do I deal with the situation if there is existing data but the new version of the application expects a different schema?
The document model (as in MongoDB, for example) is not suitable for data models where there are many relationships between the data. Joins have to be done on application level, which is additional effort and why should I program things that the database should do.
If you make the argument that Google and Amazon have developed their own databases because conventional RDBMS can no longer handle the flood of data, you can only say: You are not Google and Amazon. These companies are the spearhead, some 0.01% of scenarios where traditional databases are no longer suitable, but for the rest of the world they are.
What's not insignificant: SQL has been around for over 40 years and millions of hours of development have gone into large systems such as Oracle or Microsoft SQL. This has to be achieved by some new databases. Sometimes it is also easier to find an SQL admin than someone for MongoDB. Which brings us to the question of maintenance and management. A subject that is not exactly sexy, but that is a part of the technology decision.
Handling A Large Number Of Read Write Operations
Look towards NoSQL databases when you need to scale fast. And when do you generally need to scale fast?
When there are a large number of read-write operations on your website & when dealing with a large amount of data, NoSQL databases fit best in these scenarios. Since they have the ability to add nodes on the fly, they can handle more concurrent traffic & big amount of data with minimal latency.
Flexibility With Data Modeling
The second cue is during the initial phases of development when you are not sure about the data model, the database design, things are expected to change at a rapid pace. NoSQL databases offer us more flexibility.
Eventual Consistency Over Strong Consistency
It’s preferable to pick NoSQL databases when it’s OK for us to give up on Strong consistency and when we do not require transactions.
A good example of this is a social networking website like Twitter. When a tweet of a celebrity blows up and everyone is liking and re-tweeting it from around the world. Does it matter if the count of likes goes up or down a bit for a short while?
The celebrity would definitely not care if instead of the actual 5 million 500 likes, the system shows the like count as 5 million 250 for a short while.
When a large application is deployed on hundreds of servers spread across the globe, the geographically distributed nodes take some time to reach a global consensus.
Until they reach a consensus, the value of the entity is inconsistent. The value of the entity eventually gets consistent after a short while. This is what Eventual Consistency is.
Though the inconsistency does not mean that there is any sort of data loss. It just means that the data takes a short while to travel across the globe via the internet cables under the ocean to reach a global consensus and become consistent.
We experience this behaviour all the time. Especially on YouTube. Often you would see a video with 10 views and 15 likes. How is this even possible?
It’s not. The actual views are already more than the likes. It’s just the count of views is inconsistent and takes a short while to get updated.
Running Data Analytics
NoSQL databases also fit best for data analytics use cases, where we have to deal with an influx of massive amounts of data.
I came across this question while looking for convincing grounds to deviate from RDBMS design.
There is a great post by Julian Brown which sheds lights on constraints of distributed systems. The concept is called Brewer's CAP Theorem which in summary goes:
The three requirements of distributed systems are : Consistency, Availability and Partition tolerance (CAP in short). But you can only have two of them at a time.
And this is how I summarised it for myself:
You better go for NoSQL if Consistency is what you are sacrificing.
I designed and implemented solutions with NoSQL databases and here is my checkpoint list to make the decision to go with SQL or document-oriented NoSQL.
DON'Ts
SQL is not obsolete and remains a better tool in some cases. It's hard to justify use of a document-oriented NoSQL when
Need OLAP/OLTP
It's a small project / simple DB structure
Need ad hoc queries
Can't avoid immediate consistency
Unclear requirements
Lack of experienced developers
DOs
If you don't have those conditions or can mitigate them, then here are 2 reasons where you may benefit from NoSQL:
Need to run at scale
Convenience of development (better integration with your tech stack, no need in ORM, etc.)
More info
In my blog posts I explain the reasons in more details:
7 reasons NOT to NoSQL
2 reasons to NoSQL
Note: the above is applicable to document-oriented NoSQL only. There are other types of NoSQL, which require other considerations.
Ran into this thread and wanted to add my experience.. Many SQL databases support json data in columns and support querying of this json. So what I have used is a hybrid using a relational database with columns containing json..