How to stop MATLAB from rounding extremely small values to 0? - matlab

I have a code in MATLAB which works with very small numbers, for example, I have values that are on the order of 10^{-25}, however when MATLAB does the calculations, the values themselves are rounded to 0. Note, I am not referring to format to display these extra decimals, but rather the number itself is changed to 0. I think the reason is because MATLAB, by default, uses up to 15 digits after the decimal point for its calculations. How can I change this so that numbers that are very very small are retained as they are in the calculations?
EDIT:
My code is the following:
clc;
clear;
format long;
% Import data
P = xlsread('Data.xlsx', 'P');
d = xlsread('Data.xlsx', 'd');
CM = xlsread('Data.xlsx', 'Cov');
Original_PD = P; %Store original PD
LM_rows = size(P,1)+1; %Expected LM rows
LM_columns = size(P,2); %Expected LM columns
LM_FINAL = zeros(LM_rows,LM_columns); %Dimensions of LM_FINAL
for ii = 1:size(P,2)
P = Original_PD(:,ii);
% c1, c2, ..., cn, c0, f
interval = cell(size(P,1)+2,1);
for i = 1:size(P,1)
interval{i,1} = NaN(size(P,1),2);
interval{i,1}(:,1) = -Inf;
interval{i,1}(:,2) = d;
interval{i,1}(i,1) = d(i,1);
interval{i,1}(i,2) = Inf;
end
interval{i+1,1} = [-Inf*ones(size(P,1),1) d];
interval{i+2,1} = [d Inf*ones(size(P,1),1)];
c = NaN(size(interval,1),1);
for i = 1:size(c,1)
c(i,1) = mvncdf(interval{i,1}(:,1),interval{i,1}(:,2),0,CM);
end
c0 = c(size(P,1)+1,1);
f = c(size(P,1)+2,1);
c = c(1:size(P,1),:);
b0 = exp(1);
b = exp(1)*P;
syms x;
eqn = f*x;
for i = 1:size(P,1)
eqn = eqn*(c0/c(i,1)*x + (b(i,1)-b0)/c(i,1));
end
eqn = c0*x^(size(P,1)+1) + eqn - b0*x^size(P,1);
x0 = solve(eqn);
x0 = double(x0);
for i = 1:size(x0)
id(i,1) = isreal(x0(i,1));
end
x0 = x0(id,:);
x0 = x0(x0 > 0,:);
clear x;
for i = 1:size(P,1)
x(i,:) = (b(i,1) - b0)./(c(i,1)*x0) + c0/c(i,1);
end
% x = [x0 x1 ... xn]
x = [x0'; x];
x = x(:,sum(x <= 0,1) == 0);
% lamda
lamda = -log(x);
LM_FINAL(:,ii) = lamda;
end
The problem is in this step:
for i = 1:size(P,1)
x(i,:) = (b(i,1) - b0)./(c(i,1)*x0) + c0/c(i,1);
end
where the "difference" gets very close to 0. How can I stop this rounding from occurring at this step?
For example, when i = 10, I have the following values:
b_10 = 0.006639735483297
b_0 = 2.71828182845904
c_10 = 0.000190641848119641
c_0 = 0.356210110252579
x_0 = 7.61247930625269
After doing the calculations we get: -1868.47805854794 + 1868.47805854794 which yields a difference of -2.27373675443232E-12, that gets rounded to 0 by MATLAB.
EDIT 2:
Here is my data file which is used for the code. After you run the code (should take about a minute and half to finish running), row 11 in the variable x shows 0 (even after double clicking to check it's real value), when it shouldn't.

The problem you're having is because the IEEE standard for floating points can't distinguish your numbers from zero because they don't utilize sufficient bits.
Have a look at John D'Errico's Big Decimal Class and Variable Precision Integer Arithmetic. Another option would be to use the Big Integer Class from Java but that might be more challenging if you are unfamiliar with using Java and othe rexternal libraries in MATLAB.
Can you give an example of the calculations in which you are using 1e-25 and getting zero? Here's what I get for a floating point called small_num and one of John's high-precision-floats called small_hpf when assigning them and multiplying by pi.
>> small_num = 1e-25
small_num =
1.0000e-25
>> small_hpf = hpf(1e-25)
small_hpf =
1.000000000000000038494869749191839081371989361591338301396127644e-25
>> small_num * pi
ans =
3.1416e-25
>> small_hpf * pi
ans =
3.141592653589793236933163473501228686498684350685747717239459106e-25

Related

Calculating numerical integral using integral or quadgk

I am using MATLAB to calculate the numerical integral of a complex function including natural exponent.
I get a warning:
Infinite or Not-a-Number value encountered
if I use the function integral, while another error is thrown:
Output of the function must be the same size as the input
if I use the function quadgk.
I think the reason could be that the integrand is infinite when the variable ep is near zero.
Code shown below. Hope you guys can help me figure it out.
close all
clear
clc
%%
N = 10^5;
edot = 10^8;
yita = N/edot;
kB = 8.6173324*10^(-5);
T = 300;
gamainf = 0.115;
dTol = 3;
K0 = 180;
K = K0/160.21766208;
nu = 3*10^12;
i = 1;
data = [];
%% lambda = ec/ef < 1
for ef = 0.01:0.01:0.1
for lambda = 0.01:0.01:0.08
ec = lambda*ef;
f = #(ep) exp(-((32/3)*pi*gamainf^3*(0.5+0.5*sqrt(1+2*dTol*K*(ep-ec)/gamainf)-dTol*K*(ep-ec)/gamainf).^3/(K*(ep-ec)).^2-16*pi*gamainf^3*(0.5+0.5*sqrt(1+2*dTol*K*(ep-ec)/gamainf)-dTol*K*(ep-ec)/gamainf).^2/((1+dTol*K*(ep-ec)/(gamainf*(0.5+0.5*sqrt(1+2*dTol*K*(ep-ec)/gamainf)-dTol*K*(ep-ec)/gamainf)))*(K*(ep-ec)).^2))/(kB*T));
q = integral(f,0,ef,'ArrayValued',true);
% q = quadgk(f,0,ef);
prob = 1-exp(-yita*nu*q);
data(i,1) = ef;
data(i,2) = lambda;
data(i,3) = q;
i = i+1;
end
end
I've rewritten your equations so that a human can actually understand it:
function integration
N = 1e5;
edot = 1e8;
yita = N/edot;
kB = 8.6173324e-5;
T = 300;
gamainf = 0.115;
dTol = 3;
K0 = 180;
K = K0/160.21766208;
nu = 3e12;
i = 1;
data = [];
%% lambda = ec/ef < 1
for ef = 0.01:0.01:0.1
for lambda = 0.01:0.01:0.08
ec = lambda*ef;
q = integral(#f,0,ef,'ArrayValued',true);
% q = quadgk(f,0,ef);
prob = 1 - exp(-yita*nu*q);
data(i,:) = [ef lambda q];
i = i+1;
end
end
function y = f(ep)
G = K*(ep - ec);
r = dTol*G/gamainf;
S = sqrt(1 + 2*r);
x = (1 + S)/2 - r;
Z = 16*pi*gamainf^3;
y = exp( -Z*x.^2.*( 2*x/(3*G.^2) - 1/(G.^2*(1 + r/x))) ) /...
(kB*T));
end
end
Now, for the first iteration, ep = 0.01, the value of the argument of the exp() function inside f is huge. In fact, if I rework the function to return the argument to the exponent (not the value):
function y = f(ep)
% ... all of the above
% NOTE: removed the exp() to return the argument
y = -Z*x.^2.*( 2*x/(3*G.^2) - 1/(G.^2*(1 + r/x))) ) /...
(kB*T);
end
and print its value at some example nodes like so:
for ef = 0.01 : 0.01 : 0.1
for lambda = 0.01 : 0.01 : 0.08
ec = lambda*ef;
zzz(i,:) = [f(0) f(ef/4) f(ef)];
i = i+1;
end
end
zzz
I get this:
% f(0) f(ef/4) f(ef)
zzz =
7.878426438111721e+07 1.093627454284284e+05 3.091140080273912e+03
1.986962280947140e+07 1.201698288371587e+05 3.187767404903769e+03
8.908646053687230e+06 1.325435523124976e+05 3.288027743119838e+03
5.055141696747510e+06 1.467952125661714e+05 3.392088351112798e+03
...
3.601790797707676e+04 2.897200140791236e+02 2.577170427480841e+01
2.869829209254144e+04 3.673888685004256e+02 2.404148067956737e+01
2.381082059148755e+04 4.671147785149462e+02 2.238181495716831e+01
So, integral() has to deal with things like exp(10^7). This may not be a problem per se if the argument would fall off quickly enough, but as shown above, it doesn't.
So basically you're asking for the integral of a function that ranges in value between exp(~10^7) and exp(~10^3). Needless to say, The d(ef) in the order of 0.01 isn't going to compensate for that, and it'll be non-finite in floating point arithmetic.
I suspect you have a scaling problem. Judging from the names of your variables as well as the equations, I would think that this has something to do with thermodynamics; a reworked form of Planck's law? In that case, I'd check if you're working in nanometers; a few factors of 10^(-9) will creep in, rescaling your integrand to the compfortably computable range.
In any case, it'll be wise to check all your units, because it's something like that that's messing up the numbers.
NB: the maximum exp() you can compute is around exp(709.7827128933840)

How to reduce the time consumed by the for loop?

I am trying to implement a simple pixel level center-surround image enhancement. Center-surround technique makes use of statistics between the center pixel of the window and the surrounding neighborhood as a means to decide what enhancement needs to be done. In the code given below I have compared the center pixel with average of the surrounding information and based on that I switch between two cases to enhance the contrast. The code that I have written is as follows:
im = normalize8(im,1); %to set the range of pixel from 0-255
s1 = floor(K1/2); %K1 is the size of the window for surround
M = 1000; %is a constant value
out1 = padarray(im,[s1,s1],'symmetric');
out1 = CE(out1,s1,M);
out = (out1(s1+1:end-s1,s1+1:end-s1));
out = normalize8(out,0); %to set the range of pixel from 0-1
function [out] = CE(out,s,M)
B = 255;
out1 = out;
for i = s+1 : size(out,1) - s
for j = s+1 : size(out,2) - s
temp = out(i-s:i+s,j-s:j+s);
Yij = out1(i,j);
Sij = (1/(2*s+1)^2)*sum(sum(temp));
if (Yij>=Sij)
Aij = A(Yij-Sij,M);
out1(i,j) = ((B + Aij)*Yij)/(Aij+Yij);
else
Aij = A(Sij-Yij,M);
out1(i,j) = (Aij*Yij)/(Aij+B-Yij);
end
end
end
out = out1;
function [Ax] = A(x,M)
if x == 0
Ax = M;
else
Ax = M/x;
end
The code does the following things:
1) Normalize the image to 0-255 range and pad it with additional elements to perform windowing operation.
2) Calls the function CE.
3) In the function CE obtain the windowed image(temp).
4) Find the average of the window (Sij).
5) Compare the center of the window (Yij) with the average value (Sij).
6) Based on the result of comparison perform one of the two enhancement operation.
7) Finally set the range back to 0-1.
I have to run this for multiple window size (K1,K2,K3, etc.) and the images are of size 1728*2034. When the window size is selected as 100, the time consumed is very high.
Can I use vectorization at some stage to reduce the time for loops?
The profiler result (for window size 21) is as follows:
The profiler result (for window size 100) is as follows:
I have changed the code of my function and have written it without the sub-function. The code is as follows:
function [out] = CE(out,s,M)
B = 255;
Aij = zeros(1,2);
out1 = out;
n_factor = (1/(2*s+1)^2);
for i = s+1 : size(out,1) - s
for j = s+1 : size(out,2) - s
temp = out(i-s:i+s,j-s:j+s);
Yij = out1(i,j);
Sij = n_factor*sum(sum(temp));
if Yij-Sij == 0
Aij(1) = M;
Aij(2) = M;
else
Aij(1) = M/(Yij-Sij);
Aij(2) = M/(Sij-Yij);
end
if (Yij>=Sij)
out1(i,j) = ((B + Aij(1))*Yij)/(Aij(1)+Yij);
else
out1(i,j) = (Aij(2)*Yij)/(Aij(2)+B-Yij);
end
end
end
out = out1;
There is a slight improvement in the speed from 93 sec to 88 sec. Suggestions for any other improvements to my code are welcomed.
I have tried to incorporate the suggestions given to replace sliding window with convolution and then vectorize the rest of it. The code below is my implementation and I'm not getting the result expected.
function [out_im] = CE_conv(im,s,M)
B = 255;
temp = ones(2*s,2*s);
temp = temp ./ numel(temp);
out1 = conv2(im,temp,'same');
out_im = im;
Aij = im-out1; %same as Yij-Sij
Aij1 = out1-im; %same as Sij-Yij
Mij = Aij;
Mij(Aij>0) = M./Aij(Aij>0); % if Yij>Sij Mij = M/Yij-Sij;
Mij(Aij<0) = M./Aij1(Aij<0); % if Yij<Sij Mij = M/Sij-Yij;
Mij(Aij==0) = M; % if Yij-Sij == 0 Mij = M;
out_im(Aij>=0) = ((B + Mij(Aij>=0)).*im(Aij>=0))./(Mij(Aij>=0)+im(Aij>=0));
out_im(Aij<0) = (Mij(Aij<0).*im(Aij<0))./ (Mij(Aij<0)+B-im(Aij<0));
I am not able to figure out where I'm going wrong.
A detailed explanation of what I'm trying to implement is given in the following paper:
Vonikakis, Vassilios, and Ioannis Andreadis. "Multi-scale image contrast enhancement." In Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on, pp. 856-861. IEEE, 2008.
I've tried to see if I could get those times down by processing with colfiltand nlfilter, since both are usually much faster than for-loops for sliding window image processing.
Both worked fine for relatively small windows. For an image of 2048x2048 pixels and a window of 10x10, the solution with colfilt takes about 5 seconds (on my personal computer). With a window of 21x21 the time jumped to 27 seconds, but that is still a relative improvement on the times displayed on the question. Unfortunately I don't have enough memory to colfilt using windows of 100x100, but the solution with nlfilter works, though taking about 120 seconds.
Here the code
Solution with colfilt:
function outval = enhancematrix(inputmatrix,M,B)
%Inputmatrix is a 2D matrix or column vector, outval is a 1D row vector.
% If inputmatrix is made of integers...
inputmatrix = double(inputmatrix);
%1. Compute S and Y
normFactor = 1 / (size(inputmatrix,1) + 1).^2; %Size of column.
S = normFactor*sum(inputmatrix,1); % Sum over the columns.
Y = inputmatrix(ceil(size(inputmatrix,1)/2),:); % Center row.
% So far we have all S and Y, one value per column.
%2. Compute A(abs(Y-S))
A = Afunc(abs(S-Y),M);
% And all A: one value per column.
%3. The tricky part. If Y(i)-S(i) > 0 do something.
doPositive = (Y > S);
doNegative = ~doPositive;
outval = zeros(1,size(inputmatrix,2));
outval(doPositive) = (B + A(doPositive) .* Y(doPositive)) ./ (A(doPositive) + Y(doPositive));
outval(doNegative) = (A(doNegative) .* Y(doNegative)) ./ (A(doNegative) + B - Y(doNegative));
end
function out = Afunc(x,M)
% Input x is a row vector. Output is another row vector.
out = x;
out(x == 0) = M;
out(x ~= 0) = M./x(x ~= 0);
end
And to call it, simply do:
M = 1000; B = 255; enhancenow = #(x) enhancematrix(x,M,B);
w = 21 % windowsize
result = colfilt(inputImage,[w w],'sliding',enhancenow);
Solution with nlfilter:
function outval = enhanceimagecontrast(neighbourhood,M,B)
%1. Compute S and Y
normFactor = 1 / (length(neighbourhood) + 1).^2;
S = normFactor*sum(neighbourhood(:));
Y = neighbourhood(ceil(size(neighbourhood,1)/2),ceil(size(neighbourhood,2)/2));
%2. Compute A(abs(Y-S))
test = (Y>=S);
A = Afunc(abs(Y-S),M);
%3. Return outval
if test
outval = ((B + A) * Y) / (A + Y);
else
outval = (A * Y) / (A + B - Y);
end
function aval = Afunc(x,M)
if (x == 0)
aval = M;
else
aval = M/x;
end
And to call it, simply do:
M = 1000; B = 255; enhancenow = #(x) enhanceimagecontrast(x,M,B);
w = 21 % windowsize
result = nlfilter(inputImage,[w w], enhancenow);
I didn't spend much time checking that everything is 100% correct, but I did see some nice contrast enhancement (hair looks particularly nice).
This answer is the implementation that was suggested by Peter. I debugged the implementation and presenting the final working version of the fast implementation.
function [out_im] = CE_conv(im,s,M)
B = 255;
im = ( im - min(im(:)) ) ./ ( max(im(:)) - min(im(:)) )*255;
h = ones(s,s)./(s*s);
out1 = imfilter(im,h,'conv');
out_im = im;
Aij = im-out1; %same as Yij-Sij
Aij1 = out1-im; %same as Sij-Yij
Mij = Aij;
Mij(Aij>0) = M./Aij(Aij>0); % if Yij>Sij Mij = M/(Yij-Sij);
Mij(Aij<0) = M./Aij1(Aij<0); % if Yij<Sij Mij = M/(Sij-Yij);
Mij(Aij==0) = M; % if Yij-Sij == 0 Mij = M;
out_im(Aij>=0) = ((B + Mij(Aij>=0)).*im(Aij>=0))./(Mij(Aij>=0)+im(Aij>=0));
out_im(Aij<0) = (Mij(Aij<0).*im(Aij<0))./ (Mij(Aij<0)+B-im(Aij<0));
out_im = ( out_im - min(out_im(:)) ) ./ ( max(out_im(:)) - min(out_im(:)) );
To call this use the following code
I = imread('pout.tif');
w_size = 51;
M = 4000;
output = CE_conv(I(:,:,1),w_size,M);
The output for the 'pout.tif' image is given below
The execution time for Bigger image and with 100*100 block size is around 5 secs with this implementation.

Interpolation using polyfit (Matlab)

My script is supposed to run Runge-Kutta and then interpolate around the tops using polyfit to calculate the max values of the tops. I seem to get the x-values of the max points correct but the y-values are off for some reason. Have sat with it for 3 days now. The problem should be In the last for-loop when I calculate py?
Function:
function funk = FU(t,u)
L0 = 1;
C = 1*10^-6;
funk = [u(2); 2.*u(1).*u(2).^2./(1+u(1).^2) - u(1).*(1+u(1).^2)./(L0.*C)];
Program:
%Runge kutta
clear all
close all
clc
clf
%Given values
U0 = [240 1200 2400];
L0 = 1;
C = 1*10^-6;
T = 0.003;
h = 0.000001;
W = [];
% Runge-Kutta 4
for i = 1:3
u0 = [0;U0(i)];
u = u0;
U = u;
tt = 0:h:T;
for t=tt(1:end-1)
k1 = FU(t,u);
k2 = FU(t+0.5*h,u+0.5*h*k1);
k3 = FU((t+0.5*h),(u+0.5*h*k2));
k4 = FU((t+h),(u+k3*h));
u = u + (1/6)*(k1+2*k2+2*k3+k4)*h;
U = [U u];
end
W = [W;U];
end
I1 = W(1,:); I2 = W(3,:); I3 = W(5,:);
dI1 = W(2,:); dI2 = W(4,:); dI3 = W(6,:);
I = [I1; I2; I3];
dI = [dI1; dI2; dI3];
%Plot of the currents
figure (1)
plot(tt,I1,'r',tt,I2,'b',tt,I3,'g')
hold on
legend('U0 = 240','U0 = 1200','U0 = 2400')
BB = [];
d = 2;
px = [];
py = [];
format short
for l = 1:3
[H,Index(l)]=max(I(l,:));
Area=[(Index(l)-2:Index(l)+2)*h];
p = polyfit(Area,I(Index(l)-2:Index(l)+2),4);
rotp(1,:) = roots([4*p(1),3*p(2),2*p(3),p(4)]);
B = rotp(1,2);
BB = [BB B];
Imax(l,:)=p(1).*B.^4+p(2).*B.^3+p(3).*B.^2+p(4).*B+p(5);
Tsv(i)=4*rotp(1,l);
%px1 = linspace(h*(Index(l)-d-1),h*(Index(l)+d-2));
px1 = BB;
py1 = polyval(p,px1(1,l));
px = [px px1];
py = [py py1];
end
% Plots the max points
figure(1)
plot(px1(1),py(1),'b*-',px1(2),py(2),'b*-',px1(3),py(3),'b*-')
hold on
disp(Imax)
Your polyfit line should read:
p = polyfit(Area,I(l, Index(l)-2:Index(l)+2),4);
More interestingly, take note of the warnings you get about poor conditioning of that polynomial (I presume you're seeing these). Why? Partly because of numerical precision (your numbers are very small, scaled around 10^-6) and partly because you're asking for a 4th-order fit to five points (which is singular). To do this "better", use more input points (more than 5), or a lower-order polynomial fit (quadratic is usually plenty), and (probably) rescale before you use the polyfit tool.
Having said that, in practice this problem is often solved using three points and a quadratic fit, because it's computationally cheap and gives very nearly the same answers as more complex approaches, but you didn't get that from me (with noiseless data like this, it doesn't much matter anyway).

Frank - Wolfe Algorithm in matlab

I'm trying to solve the following question :
maximize x^2-5x+y^2-3y
x+y <= 8
x<=2
x,y>= 0
By using Frank Wolf algorithm ( according to http://web.mit.edu/15.053/www/AMP-Chapter-13.pdf ).
But after running of the following program:
syms x y t;
f = x^2-5*x+y^2-3*y;
fdx = diff(f,1,x); % f'x
fdy = diff(f,1,y); % y'x
x0 = [0 0]; %initial point
A = [1 1;1 0]; %constrains matrix
b = [8;2];
lb = zeros(1,2);
eps = 0.00001;
i = 1;
X = [inf inf];
Z = zeros(2,200); %result for end points (x1,x2)
rr = zeros(1,200);
options = optimset('Display','none');
while( all(abs(X-x0)>[eps,eps]) && i < 200)
%f'x(x0)
c1 = subs(fdx,x,x0(1));
c1 = subs(c1,y,x0(2));
%f'y(x0)
c2 = subs(fdy,x,x0(1));
c2 = subs(c2,y,x0(2));
%optimization point of linear taylor function
ys = linprog((-[c1;c2]),A,b,[],[],lb,[],[],options);
%parametric representation of line
xt = (1-t)*x0(1)+t*ys(1,1);
yt = (1-t)*x0(2)+t*ys(2,1);
%f(x=xt,y=yt)
ft = subs(f,x,xt);
ft = subs(ft,y,yt);
%f't(x=xt,y=yt)
ftd = diff(ft,t,1);
%f't(x=xt,y=yt)=0 -> for max point
[t1] = solve(ftd); % (t==theta)
X = double(x0);%%%%%%%%%%%%%%%%%
% [ xt(t=t1) yt(t=t1)]
xnext(1) = subs(xt,t,t1) ;
xnext(2) = subs(yt,t,t1) ;
x0 = double(xnext);
Z(1,i) = x0(1);
Z(2,i) = x0(2);
i = i + 1;
end
x_point = Z(1,:);
y_point = Z(2,:);
% Draw result
scatter(x_point,y_point);
hold on;
% Print results
fprintf('The answer is:\n');
fprintf('x = %.3f \n',x0(1));
fprintf('y = %.3f \n',x0(2));
res = x0(1)^2 - 5*x0(1) + x0(2)^2 - 3*x0(2);
fprintf('f(x0) = %.3f\n',res);
I get the following result:
x = 3.020
y = 0.571
f(x0) = -7.367
And this no matter how many iterations I running this program (1,50 or 200).
Even if I choose a different starting point (For example, x0=(1,6) ), I get a negative answer to most.
I know that is an approximation, but the result should be positive (for x0 final, in this case).
My question is : what's wrong with my implementation?
Thanks in advance.
i changed a few things, it still doesn't look right but hopefully this is getting you in the right direction. It looks like the intial x0 points make a difference to how the algorithm converges.
Also make sure to check what i is after running the program, to determine if it ran to completion or exceeded the maximum iterations
lb = zeros(1,2);
ub = [2,8]; %if x+y<=8 and x,y>0 than both x,y < 8
eps = 0.00001;
i_max = 100;
i = 1;
X = [inf inf];
Z = zeros(2,i_max); %result for end points (x1,x2)
rr = zeros(1,200);
options = optimset('Display','none');
while( all(abs(X-x0)>[eps,eps]) && i < i_max)
%f'x(x0)
c1 = subs(fdx,x,x0(1));
c1 = subs(c1,y,x0(2));
%f'y(x0)
c2 = subs(fdy,x,x0(1));
c2 = subs(c2,y,x0(2));
%optimization point of linear taylor function
[ys, ~ , exit_flag] = linprog((-[c1;c2]),A,b,[],[],lb,ub,x0,options);
so here is the explanation of the changes
ub, uses our upper bound. After i added a ub, the result immediately changed
x0, start this iteration from the previous point
exit_flag this allows you to check exit_flag after execution (it always seems to be 1 indicating it solved the problem correctly)

Cubic Spline Program

I'm trying to write a cubic spline interpolation program. I have written the program but, the graph is not coming out correctly. The spline uses natural boundary conditions(second dervative at start/end node are 0). The code is in Matlab and is shown below,
clear all
%Function to Interpolate
k = 10; %Number of Support Nodes-1
xs(1) = -1;
for j = 1:k
xs(j+1) = -1 +2*j/k; %Support Nodes(Equidistant)
end;
fs = 1./(25.*xs.^2+1); %Support Ordinates
x = [-0.99:2/(2*k):0.99]; %Places to Evaluate Function
fx = 1./(25.*x.^2+1); %Function Evaluated at x
%Cubic Spline Code(Coefficients to Calculate 2nd Derivatives)
f(1) = 2*(xs(3)-xs(1));
g(1) = xs(3)-xs(2);
r(1) = (6/(xs(3)-xs(2)))*(fs(3)-fs(2)) + (6/(xs(2)-xs(1)))*(fs(1)-fs(2));
e(1) = 0;
for i = 2:k-2
e(i) = xs(i+1)-xs(i);
f(i) = 2*(xs(i+2)-xs(i));
g(i) = xs(i+2)-xs(i+1);
r(i) = (6/(xs(i+2)-xs(i+1)))*(fs(i+2)-fs(i+1)) + ...
(6/(xs(i+1)-xs(i)))*(fs(i)-fs(i+1));
end
e(k-1) = xs(k)-xs(k-1);
f(k-1) = 2*(xs(k+1)-xs(k-1));
r(k-1) = (6/(xs(k+1)-xs(k)))*(fs(k+1)-fs(k)) + ...
(6/(xs(k)-xs(k-1)))*(fs(k-1)-fs(k));
%Tridiagonal System
i = 1;
A = zeros(k-1,k-1);
while i < size(A)+1;
A(i,i) = f(i);
if i < size(A);
A(i,i+1) = g(i);
A(i+1,i) = e(i);
end
i = i+1;
end
for i = 2:k-1 %Decomposition
e(i) = e(i)/f(i-1);
f(i) = f(i)-e(i)*g(i-1);
end
for i = 2:k-1 %Forward Substitution
r(i) = r(i)-e(i)*r(i-1);
end
xn(k-1)= r(k-1)/f(k-1);
for i = k-2:-1:1 %Back Substitution
xn(i) = (r(i)-g(i)*xn(i+1))/f(i);
end
%Interpolation
if (max(xs) <= max(x))
error('Outside Range');
end
if (min(xs) >= min(x))
error('Outside Range');
end
P = zeros(size(length(x),length(x)));
i = 1;
for Counter = 1:length(x)
for j = 1:k-1
a(j) = x(Counter)- xs(j);
end
i = find(a == min(a(a>=0)));
if i == 1
c1 = 0;
c2 = xn(1)/6/(xs(2)-xs(1));
c3 = fs(1)/(xs(2)-xs(1));
c4 = fs(2)/(xs(2)-xs(1))-xn(1)*(xs(2)-xs(1))/6;
t1 = c1*(xs(2)-x(Counter))^3;
t2 = c2*(x(Counter)-xs(1))^3;
t3 = c3*(xs(2)-x(Counter));
t4 = c4*(x(Counter)-xs(1));
P(Counter) = t1 +t2 +t3 +t4;
else
if i < k-1
c1 = xn(i-1+1)/6/(xs(i+1)-xs(i-1+1));
c2 = xn(i+1)/6/(xs(i+1)-xs(i-1+1));
c3 = fs(i-1+1)/(xs(i+1)-xs(i-1+1))-xn(i-1+1)*(xs(i+1)-xs(i-1+1))/6;
c4 = fs(i+1)/(xs(i+1)-xs(i-1+1))-xn(i+1)*(xs(i+1)-xs(i-1+1))/6;
t1 = c1*(xs(i+1)-x(Counter))^3;
t2 = c2*(x(Counter)-xs(i-1+1))^3;
t3 = c3*(xs(i+1)-x(Counter));
t4 = c4*(x(Counter)-xs(i-1+1));
P(Counter) = t1 +t2 +t3 +t4;
else
c1 = xn(i-1+1)/6/(xs(i+1)-xs(i-1+1));
c2 = 0;
c3 = fs(i-1+1)/(xs(i+1)-xs(i-1+1))-xn(i-1+1)*(xs(i+1)-xs(i-1+1))/6;
c4 = fs(i+1)/(xs(i+1)-xs(i-1+1));
t1 = c1*(xs(i+1)-x(Counter))^3;
t2 = c2*(x(Counter)-xs(i-1+1))^3;
t3 = c3*(xs(i+1)-x(Counter));
t4 = c4*(x(Counter)-xs(i-1+1));
P(Counter) = t1 +t2 +t3 +t4;
end
end
end
P = P';
P(length(x)) = NaN;
plot(x,P,x,fx)
When I run the code, the interpolation function is not symmetric and, it doesn't converge correctly. Can anyone offer any suggestions about problems in my code? Thanks.
I wrote a cubic spline package in Mathematica a long time ago. Here is my translation of that package into Matlab. Note I haven't looked at cubic splines in about 7 years, so I'm basing this off my own documentation. You should check everything I say.
The basic problem is we are given n data points (x(1), y(1)) , ... , (x(n), y(n)) and we wish to calculate a piecewise cubic interpolant. The interpolant is defined as
S(x) = { Sk(x) when x(k) <= x <= x(k+1)
{ 0 otherwise
Here Sk(x) is a cubic polynomial of the form
Sk(x) = sk0 + sk1*(x-x(k)) + sk2*(x-x(k))^2 + sk3*(x-x(k))^3
The properties of the spline are:
The spline pass through the data point Sk(x(k)) = y(k)
The spline is continuous at the end-points and thus continuous everywhere in the interpolation interval Sk(x(k+1)) = Sk+1(x(k+1))
The spline has continuous first derivative Sk'(x(k+1)) = Sk+1'(x(k+1))
The spline has continuous second derivative Sk''(x(k+1)) = Sk+1''(x(k+1))
To construct a cubic spline from a set of data point we need to solve for the coefficients
sk0, sk1, sk2 and sk3 for each of the n-1 cubic polynomials. That is a total of 4*(n-1) = 4*n - 4 unknowns. Property 1 supplies n constraints, and properties 2,3,4 each supply an additional n-2 constraints. Thus we have n + 3*(n-2) = 4*n - 6 constraints and 4*n - 4 unknowns. This leaves two degrees of freedom. We fix these degrees of freedom by setting the second derivative equal to zero at the start and end nodes.
Let m(k) = Sk''(x(k)) , h(k) = x(k+1) - x(k) and d(k) = (y(k+1) - y(k))/h(k). The following
three-term recurrence relation holds
h(k-1)*m(k-1) + 2*(h(k-1) + h(k))*m(k) + h(k)*m(k+1) = 6*(d(k) - d(k-1))
The m(k) are unknowns we wish to solve for. The h(k) and d(k) are defined by the input data.
This three-term recurrence relation defines a tridiagonal linear system. Once the m(k) are determined the coefficients for Sk are given by
sk0 = y(k)
sk1 = d(k) - h(k)*(2*m(k) + m(k-1))/6
sk2 = m(k)/2
sk3 = m(k+1) - m(k)/(6*h(k))
Okay that is all the math you need to know to completely define the algorithm to compute a cubic spline. Here it is in Matlab:
function [s0,s1,s2,s3]=cubic_spline(x,y)
if any(size(x) ~= size(y)) || size(x,2) ~= 1
error('inputs x and y must be column vectors of equal length');
end
n = length(x)
h = x(2:n) - x(1:n-1);
d = (y(2:n) - y(1:n-1))./h;
lower = h(1:end-1);
main = 2*(h(1:end-1) + h(2:end));
upper = h(2:end);
T = spdiags([lower main upper], [-1 0 1], n-2, n-2);
rhs = 6*(d(2:end)-d(1:end-1));
m = T\rhs;
% Use natural boundary conditions where second derivative
% is zero at the endpoints
m = [ 0; m; 0];
s0 = y;
s1 = d - h.*(2*m(1:end-1) + m(2:end))/6;
s2 = m/2;
s3 =(m(2:end)-m(1:end-1))./(6*h);
Here is some code to plot a cubic spline:
function plot_cubic_spline(x,s0,s1,s2,s3)
n = length(x);
inner_points = 20;
for i=1:n-1
xx = linspace(x(i),x(i+1),inner_points);
xi = repmat(x(i),1,inner_points);
yy = s0(i) + s1(i)*(xx-xi) + ...
s2(i)*(xx-xi).^2 + s3(i)*(xx - xi).^3;
plot(xx,yy,'b')
plot(x(i),0,'r');
end
Here is a function that constructs a cubic spline and plots in on the famous Runge function:
function cubic_driver(num_points)
runge = #(x) 1./(1+ 25*x.^2);
x = linspace(-1,1,num_points);
y = runge(x);
[s0,s1,s2,s3] = cubic_spline(x',y');
plot_points = 1000;
xx = linspace(-1,1,plot_points);
yy = runge(xx);
plot(xx,yy,'g');
hold on;
plot_cubic_spline(x,s0,s1,s2,s3);
You can see it in action by running the following at the Matlab prompt
>> cubic_driver(5)
>> clf
>> cubic_driver(10)
>> clf
>> cubic_driver(20)
By the time you have twenty nodes your interpolant is visually indistinguishable from the Runge function.
Some comments on the Matlab code: I don't use any for or while loops. I am able to vectorize all operations. I quickly form the sparse tridiagonal matrix with spdiags. I solve it using the backslash operator. I counting on Tim Davis's UMFPACK to handle the decomposition and forward and backward solves.
Hope that helps. The code is available as a gist on github https://gist.github.com/1269709
There was a bug in spline function, generated (n-2) by (n-2) should be symmetric:
lower = h(2:end);
main = 2*(h(1:end-1) + h(2:end));
upper = h(1:end-1);
http://www.mpi-hd.mpg.de/astrophysik/HEA/internal/Numerical_Recipes/f3-3.pdf