Implementing reinforcement learning in NetLogo (Learning in multi-agent models) - netlogo

I am thinking to implement a learning strategy for different types of agents in my model. To be honest, I still do not know what kind of questions should I ask first or where to start.
I have two types of agents which I want them to learn by experience, they have a pool of actions which each has different reward based on specific situations that might happen.
I am new to reinforcement Learning methods, therefore any suggestions on what kind of questions should I ask myself is welcomed :)
Here is how I am going forward to formulate my problem:
Agents have a lifetime and they keep track of a few things that matter for them and these indicators are different for different agents, for example, one agent wants to increase A another wants B more than A.
States are points in an agent's lifetime which they
Have more than one option (I do not have a clear definition for
States as they might happen a few times or not happen at all because
Agents move around and they might never face a situation)
The reward is the an increase or decrease in an indicator that agents can get from an action in a specific State, and agent do not know what would be the gain if he chose another action.
The gain is not constant, the states are not well defined and there is no formal transition of one state into another,
For example agent can decide to share with one of the co-located agent (Action 1) or with all of the agents at the same location(Action 2) If certain conditions hold true Action A will be more rewarding for that agent, while in other conditions Action 2 will have higher reward; my problem is I did not see any example with unknown rewards since sharing in this scenario also depends on the other agent's characteristics (which affects the conditions of reward system) and in different states it will be different.
In my model there is no relationship between the action and the following state,and that makes me wonder if its ok to think about RL in this situation at all.
What I am looking to optimize here is the ability for my agents to reason about current situation in a better way and not only respond to their need which is triggered by their internal states. They have a few personalities which can define their long term goal and can affect their decision making in different situations, but I want them to remember what action in a situation helped them to increase their preferred long term goal.

In my model there is no relationship between the action and the following state,and that makes me wonder if its ok to think about RL in this situation at all.
This seems strange. What do actions do if not change state? Note that agents don't have to necessarily know how their actions will change their state. Similarly, actions could change the state imperfectly (a robots treads could skid out so it doesn't actually move when it tries to). In fact, some algorithms are specifically designed for this uncertainty.
In any case, even if the agents are moving around the state space without having any control, it can still learn the rewards for the different states. Indeed, many RL algorithms involve moving around the state space semi-randomly to figure out what the rewards are.
I do not have a clear definition for States as they might happen a few times or not happen at all because Agents move around and they might never face a situation
You might consider expanding what goes into what you consider to be a "state". For instance, the position seems like it should definitely go into the variables identifying a state. Not all states need to have rewards (although good RL algorithms typically infer a measure of goodness of neutral states).
I would recommend clearly defining the variables that determine an agent's state. For instance, the state space could be current-patch X internal-variable-value X other-agents-present. In the simplest case, the agent can observe all of the variables that make up their state. However, there are algorithms that don't require this. An agent should always be in a state, even if the state has no reward value.
Now, concerning unknown reward. That's actually totally okay. Reward can be a random variable. In that case, a simple way to apply standard RL algorithms would be to use the expected value of the variable when making decisions. If the distribution is unknown, then the algorithm could just use the mean of the rewards observed so far.
Alternatively, you could include the variables that determine the reward in the definition of the state. That way, if the reward changes, then it is literally in a different state. For example, suppose a robot is on top of a building. It needs to get to the top of the building in front of it. If it just moves forward, it falls to ground. Thus, that state has a very low reward. However, if it first places a plank that goes from one building to the other, and then moves forward, the reward changes. To represent this, we could include plank-in-place as a variable so that putting the board in place actually changes the robot's current state and the state that would result from moving forward. Thus, the reward itself has not changed; it's just in a different state.
Hopefully this helps!
UPDATE 2/7/2018: A recent upvote reminded me of the existence of this question. In the years since it was asked, I've actually dived into RL in NetLogo to a much greater extent. In particular, I've made a python extension for NetLogo, primarily to make it easier to integrate machine learning algorithms in with model. One of the demos of the extension trains a collection of agents using deep Q-learning as the model runs.

Related

How to i make agents in AnyLogic avoid another moving agent?

I am trying to model an agent based model where a certain agent population of people avoid to get close to a single agent, a random moving VIP.
I have tried to useif (distanceTo(main.vip < restrictedArea)) ;moveTo(uniform(500),uniform(500))
The agent will, most of the time, move to its new random destination through the restricted area which i want to avoid
Either you use the Material-handling library (where the transporters have build-in collision avoidance).
Or you model it youself. For that, you need a cyclic event in your agent that constantly checks the distance to whatever other agent you are interested in. If below some threshold, you tell the agent to move elsewhere.
Note: the first option can be quite slow. The second is not trivial to implement. Less due to coding skills, more because having intelligent collision avoidance algorithms is not trivial

integrate Modelica variable without influencing state selection

I want to integrate a Modelica variable over time, just for convenience in plotting and post-processing. The variable I want to integrate over time is the power of a compressor so that I get the total energy. The first idea would be to add these lines:
Modelica.Units.SI.Power P_comp;
Modelica.Units.SI.Energy E_comp;
equation
P_comp = der(E_comp);
Is that the recommended way, or are there (better?) alternatives? Is it expected to influence the selection of dynamic states?
Assuming that those two lines are the only ones using E_comp that should work.
Basically E_comp will be part of its own separate state-selection block and changes there shouldn't influence anything else.
However, state selection consists of a number of algorithms and heuristics so it is difficult to formally guarantee that any change does not influence it.
I could imagine some strange possibilities that would break this, but I don't think anyone has implemented them - and I don't see a use-case for them (except to mess up cases like this).
And if you instead of integrating want to differentiate a signal it is a lot messier.

Is there a way to record when (and how often) Transporters get within a certain distance of each other?

I have an AnyLogic simulation model using trucks and forklifts as agents (Transporter type), and among other things would like to identify each time one of them becomes within a certain distance of another one (example within 5 meters). I will record this count as a variable within the main space of the model. I am using path-guided navigation.
I have seen a method "agentsInRange" which will probably be able to do the trick, but am not sure where to call this from. I assume I should be able to use the AL functionality of "Min distance to obstacle" (TransporterFleet) and "Collision detection timeout" (TransporterControl)?
Thanks in advance!
Since there don't seem to be pre-built functions for this, afaik, the easiest way is to:
add an int variable to your transporter agent type counter
add an event to your transporter type checkCollision that triggers every second or so
in the event, loop across the entire population of transporters and count the number that are closer than X meters (use distanceTo(otherTransporter) and write your own custom code)
add that number to counter
Note that this might be very inefficient computationally as it is quite brute-force. But might be good enough :)

Programming an intelligent game-playing bot

I am taking part in a programming competition where the objective is writing a bot that can play a specific game.
The objective of the game is to earn a certain amount of points. You control multiple airships, that you move around, capture islands and navigate drones that carry treasure. You play against one opponent, turns happen simultaneously, and there is a time limit. You can move multiple ships and drones in one turn. You can program your bot in Python, Java or C#.
The exact details don‘t matter, just that each ship has around 15 options each turn (moving and shooting) and overall you have around 10000 different options for each turn (different configurations of airship movements and shooting)
Up until now I approached this competition naively, and haven‘t done anything exceptionally clever (for example, if near enemy, shoot). I have read about minimax algorithms, and I would really like to apply it here (or something similar), you can assume that I can tell the value of a state. My problem is the mass of options for each turn - which create an enourmous branching factor that doesnt let me get very deep.
Question 1: Is there a better, applicable approach to this problem? Perhaps deep-learning or something similar?
Question 2: Is there a way to minimize the branching factor? I`ve read about alpha-beta and similar algorithms, but nothing seems to do the job.
Any help would be much appreciated
The minimax algorithm seems to be natural for these kinds of problems. At first, the game will be modelled in a abstract way and then a solver is used to find the path from current situation to a gamestate which maximize the amount of points. A similar approach to minimax is GOAP, which was implemented in the 1970'er for Shakey the robot under the name STRIPS. But, GOAP and minimax has two problems: first, a abstract model of the game is needed (perhaps in PDDL or in Game Description Language) and second the state-space is to big.
An better alternative to planning is to use a Behavior Tree. Thats a static program which describes the behavior of an agent. No solver is needed and no complete modelling of the game is needed. Instead, a bottom up approach is used with multiple edit-compile-run iterations for finding the optimal behavior tree (Test-driven-development). To implement such programming approach a so called "reactive planner" has to be implemented first which is another word for a realtime scheduler. Thats a module whichs maps a behavior tree onto a gantt-chart for executing an action at a specific moment in time. As introduction, the unity3d Engine is a good starting point, which has a full behaviortree implementation out-of-the-box.

In FSMs does one State last one clock cycle or more?

Need to design a simple one for school.
More specifically a Moore FSM. Im not sure how state transitions happen, is it next state each clock?
I need to know because im wondering if i can shift a register and add a value to it, all in the same state... Could use wave edges?
EDIT:
I have to design the ALU part with registers as a schematic from gate-level, so no target CPU.
I made the algorith diagram, then put states to function blocks according Moore FSM rules. each block of operations gets one state.
For instance in a state S1, i have the following operations: y0 = shift Reg1 left; y1 = Reg1 = Reg1 + Reg2. So the microcommand that the control part of Moore FSM outputs would be 0000011 (yn...y1,y0). this microcommand should be the input to the ALU part which i need to design. Now i realized y1,y0 will conflict eachother, since both are using Reg1.
Its problematic since I dont actually have the Control part, I have to imagine the core FSM and design only the ALU with registers. This is why i was wondering if i get more than one clock cycle, so i can sequence y0,y1 or do i have to complete the entire operation in one clock?
I plan on making parallel-in, parallel-out non-shift registers, obviously i cant do the two operations of the microcommand at the same time. So what can i do:
1. make extra states? which i really dont want to do
2.use edges of a single clock? (might cause problems?)
3.Assume i get a preset amount of ticks from the clock to complete the microcommand ?
This would make the most sense, but i dont know if its the case.
The control unit does "know" the algorithm and thus how many operations need to be performed
I have to note again, that the control part is totally abstract and i have no idea how this is handled in practice.
A FSM itself has no inherent notion of time (although it can be defined). A Moore machine is simplified model and lacks the ability to even formally represent an ever progressing "time" (without, of course, implementing the counting entirely with states); remember, there is only a finite set of states.
In any case, time can be introduced in an implementation detail of a particular FSM and the amount of time might required to change between particular states might not be constant. (A particular FSM might also map differently to different implementations.) In the case of a clocked system it would require looking into how each "clock" is defined in the implementation; it might be leading edge, trailing edge, both, or something entirely different.
Instead of looking at the FSM here for guidance (it is just the logical progression of states), look at the opcodes (or whatever the implementation is) that the FSM represents, and how the CPU (or whatever the implementation is) in question "executes" them.
(What do the books say? ;-)