Matlab: recursive algorithm to return the run count easily without profiler? - matlab

I would like to get the number of iterations that the recursive mlfnonneg requires. Currently, I use profiler for this but it would be more useful to get the number as a return value from the function. Is there any easy way to get it?
I measure the running time of a function like this
h=#() mlfnonneg(lb,ub,mlfBinCor,method);
tElapsed=timeit(h);
and now the function mlfnonneg should return the number of iterations. I have considered adding a ticker that the function always returns but I don't know how to get the return value after using timeit. How to get the running time and the running count of the recursive algorithm elegantly?

You can always add an optional return value to a function which you can use as a counter. Something like this:
[... count] = f(...)
% Do stuff here
if <some condition>
% Recurse
[... count] = f(...);
count = count + 1;
else
% Terminal condition
count = 1;
end
You should just call your function one more time to get the count. This should not be a significant problem, since timeit actually performs multiple calls to your function to get an average metric.

I don't know if this is an option for you - but you could create a global variable IT_COUNT that you declare both at the top level, and inside your function.
Before calling timeit() you set the variable to zero; inside the routine you increment it for every loop. When the function returns you print out the result - and there is your answer.
It does depend on you being able to modify the code to mlfnonneg to include the counter. I don't see an easy way around that, but maybe others have a better idea.
update inspired by Luis Mendo's (now deleted) answer that basically says the same thing, a bit more information.
In your mlfnonneg routine, add the following two lines (in a place where they are executed "once per iteration"):
global IT_COUNT;
if numel(IT_COUNT)==0, IT_COUNT = 1; else IT_COUNT = IT_COUNT + 1; end
This ensures that if you forget to create the variable at the top level, the code will not crash (you will thank me in the future, when you re-use this code and don't remember that you need a global variable...)
At the top level, add
global IT_COUNT
IT_COUNT = 0;
Then run your timeit() routine; finally use
fprintf(1, "The number of iterations was %d\n", IT_COUNT);
to get the answer you were looking for.

Related

equivalent of `evalin` that doesn't require an output argument (internally)

Background -- I was reading up on accessing shadowed functions, and started playing with builtin . I wrote a little function:
function klear(x)
% go to parent environment...
evalin('base', builtin('clear','x')) ;
end
This throws the error:
Error using clear
Too many output arguments.
I think this happens because evalin demands an output from whatever it's being fed, but clear is one of the functions which has no return value.
So two questions: am I interpreting this correctly, and if so, is there an alternative function that allows me to execute a function in the parent environment (that doesn't require an output)?
Note: I'm fully aware of the arguments against trying to access shadowed funcs (or rather, to avoid naming functions in a way that overload base funcs, etc). This is primarily a question to help me learn what can and can't be done in MATLAB.
Note 2
My original goal was to write an overload function that would require an input argument, to avoid the malware-ish behavior of clear, which defaults to deleting everything. In Q&D pseudocode,
function clear(x)
if ~exist('x','var') return
execute_in_base_env(builtin(clear(x)))
end
There's a couple issues with your clear override:
It will always clear in the base workspace regardless of where it's called from.
It doesn't support multiple inputs, which is a common use case for clear.
Instead I'd have it check for whether it was called from the base workspace, and special-case that for your check for whether it's clearing everything. If some function is calling plain clear to clear all its variables, that's bad practice, but it's still how that function's logic works, and you don't want to break that. Otherwise it could error, or worse, return incorrect results.
So, something like this:
function clear(varargin)
stk = dbstack;
if numel(stk) == 1 && (nargin == 0 || ismember('all', varargin))
fprintf('clear: balking at clearing all vars in base workspace. Nothing cleared.\n');
return;
end
% Check for quoting problems
for i = 1:numel(varargin)
if any(varargin{i} == '''')
error('You have a quote in one of your args. That''s not valid.');
end
end
% Construct a clear() call that works with evalin()
arg_strs = strcat('''', varargin, '''');
arg_strs = [{'''clear'''} arg_strs];
expr = ['builtin(' strjoin(arg_strs, ', '), ')'];
% Do it
evalin('caller', expr);
end
I hope it goes without saying that this is an atrocious hack that I wouldn't recommend in practice. :)
What happens in your code:
evalin('base', builtin('clear','x'));
is that builtin is evaluated in the current context, and because it is used as an argument to evalin, it is expected to produce an output. It is exactly the same as:
ans = builtin('clear','x');
evalin('base',ans);
The error message you see occurs in the first of those two lines of code, not in the second. It is not because of evalin, which does support calling statements that don't produce an output argument.
evalin requires a string to evaluate. You need to build this string:
str = 'builtin(''clear'',''x'')';
evalin('base',ans);
(In MATLAB, the quote character is escaped by doubling it.)
You function thus would look like this:
function clear(var)
try
evalin('base',['builtin(''clear'',''',var,''')'])
catch
% ignore error
end
end
(Inserting a string into another string this way is rather awkward, one of the many reasons I don't like eval and friends).
It might be better to use evalin('caller',...) in this case, so that when you call the new clear from within a function, it deletes something in the function's workspace, not the base one. I think 'base' should only be used from within a GUI that is expected to control variables in the user's workspace, not from a function that could be called anywhere and is expected (by its name in this case) to do something local.
There are reasons why this might be genuinely useful, but in general you should try to avoid the use of clear just as much as the use of eval and friends. clear slows down program execution. It is much easier (both on the user and on the MATLAB JIT) to assign an empty array to a variable to remove its contents from memory (as suggested by rahnema1 in a comment. Your base workspace would not be cluttered with variables if you used function more: write functions, not scripts!

clearer explanation of function level scope for recursion

This is an example from the book 'Matlab for Neuroscientists'. I don't understand the order in which, or why, g gets assigned a new value after each recursion. Nor do I understand why "factorial2" is included in the final line of code.
here is a link to the text
Basically, I am asking for someone to re-word the authors explanation (circled in red) of how the function works, as if they were explaining the concept and processes to a 5-year old. I'm brand new to programming. I thought I understood how this worked from reading another book, but now this authors explanation is causing nothing but confusion. Many thanks to anyone who can help!!
A recursive method works by breaking a larger problem into smaller problems each time the method is called. This allows you to break what would be a difficult problem; a factorial summation, into a series of smaller problems.
Each recursive function has 2 parts:
1) The base case: The lowest value that we care about evaluating. Usually this goes to zero or one.
if (num == 1)
out = 1;
end
2) The general case: The general case is what we are going to call until we reach the base case. We call the function again, but this time with 1 less than the previous function started with. This allows us to work our way towards the base case.
out = num + factorial(num-1);
This statement means that we are going to firstly call the function with 1 less than what this function with; we started with three, the next call starts with two, the call after that starts with 1 (Which triggers our base case!)
Once our base case is reached, the methods "recurse-out". This means they bounce backwards, back into the function that called it, bringing all the data from the functions below it!It is at this point that our summation actually occurs.
Once the original function is reached, we have our final summation.
For example, let's say you want the summation of the first 3 integers.
The first recursive call is passed the number 3.
function [out] = factorial(num)
%//Base case
if (num == 1)
out = 1;
end
%//General case
out = num + factorial(num-1);
Walking through the function calls:
factorial(3); //Initial function call
//Becomes..
factorial(1) + factorial(2) + factorial(3) = returned value
This gives us a result of 6!

How can I get a persistent counter in a Matlab function without an `isempty` hack?

I would like to add a counter to a function so it knows how many times it has been called.
Here is what I am currently using.
function Foo ()
persistent counter;
if (isempty(counter))
counter = 0
end
counter = counter + 1
end
Line 3-5 looks like a hack.
How can I directly initialize counter to 0 without having it reset or using isempty?
Merlin, isempty(marker) should be isempty(counter) but I'm sure that's what you meant. The code you have is what the matlab documentation recommends if you look here and here. Additionally, this is also what Loren uses as well. So what you have is correct (sorry if this answer is not satisfying).

return NOT exiting function properly in MATLAB

I'm running a recursive function which searches a room for an object. This code is working in conjunction with another process essentially running the same code. The first thing the code does is check to see if the other one has found the object and, if so, it is supposed to break out of the function.
When I do the check to see if the other process has found the object, if it has, I use "return" to break out of that function at which time it's supposed to move onto other lines of code...However, for some reason it doesn't fully break out but instead just runs the function again and again.
Any ideas on how I can get it to break out?
I would and can provide the code but it's kind of long
EDIT
Parent script
!matlab -r "zz_Mock_ROB2_Find" & distT = 0.3;
Rob1_ObjFound = 0;
matrix = search_TEST_cam(rob, vid, 0.3, XYpos, 'north', stack, matrix, 0);
disp('I"M OUT')
Recursive code
function matrix = search_TEST_cam(rob1, vid, distT, startingPos, currentDir, stack, matrix, bT)
Rob1_ObjFound = 0;
Rob2_ObjFound = 0;
try
load('Rob2_ObjFound.mat', 'Rob2_ObjFound');
catch
end
if(Rob2_ObjFound == 1)
setDriveWheelsCreate(rob1, 0, 0);
disp('ROB_2 FOUND THE OBJECT')
pause(0.5)
BeepRoomba(rob1)
pause(0.5)
setDriveWheelsCreate(rob1, 0, 0);
return
end
Use break to break out of a for or a while loop and terminate execution, i.e., statements after that are ignored. For e.g.,
for i=1:5
if i==3
break
else
fprintf('%u,',i)
end
end
outputs 1,2, and the code terminates when i=3. If you have nested loops, break will only break out of its current loop and move on to the parent loop.
To skip only the current iteration and move on to the next, use continue. Using the same example,
for i=1:5
if i==3
continue
else
fprintf('%u,',i)
end
end
outputs 1,2,4,5,.
Using return in a function just returns control to the parent function/script that called it.
It seems like you're using the wrong one in your code. However, it's hard to tell without knowing how you're using them. Anyway, you can try one of these three and see if it makes a difference.
It's hard to say without seeing your code, but I doubt it's a problem with the RETURN statement. It's more likely a problem with how you've set up your recursion. If your recursive function has called itself a number of times, then when you finally invoke a RETURN statement it will return control from the current function on the stack to the calling function (i.e. a previous call to your recursive function). I'm guessing the calling function doesn't stop the recursion properly and ends up calling itself again, continuing the recursion.
My advice: check the exit conditions for your recursive function to make sure that, when the object is found and the most recent call returns, every previous call is properly informed that it should return as well.

Constants in MATLAB

I've come into ownership of a bunch of MATLAB code and have noticed a bunch of "magic numbers" scattered about the code. Typically, I like to make those constants in languages like C, Ruby, PHP, etc. When Googling this problem, I found that the "official" way of having constants is to define functions that return the constant value. Seems kludgey, especially because MATLAB can be finicky when allowing more than one function per file.
Is this really the best option?
I'm tempted to use / make something like the C Preprocessor to do this for me. (I found that something called mpp was made by someone else in a similar predicament, but it looks abandoned. The code doesn't compile, and I'm not sure if it would meet my needs.)
Matlab has constants now. The newer (R2008a+) "classdef" style of Matlab OOP lets you define constant class properties. This is probably the best option if you don't require back-compatibility to old Matlabs. (Or, conversely, is a good reason to abandon back-compatibility.)
Define them in a class.
classdef MyConstants
properties (Constant = true)
SECONDS_PER_HOUR = 60*60;
DISTANCE_TO_MOON_KM = 384403;
end
end
Then reference them from any other code using dot-qualification.
>> disp(MyConstants.SECONDS_PER_HOUR)
3600
See the Matlab documentation for "Object-Oriented Programming" under "User Guide" for all the details.
There are a couple minor gotchas. If code accidentally tries to write to a constant, instead of getting an error, it will create a local struct that masks the constants class.
>> MyConstants.SECONDS_PER_HOUR
ans =
3600
>> MyConstants.SECONDS_PER_HOUR = 42
MyConstants =
SECONDS_PER_HOUR: 42
>> whos
Name Size Bytes Class Attributes
MyConstants 1x1 132 struct
ans 1x1 8 double
But the damage is local. And if you want to be thorough, you can protect against it by calling the MyConstants() constructor at the beginning of a function, which forces Matlab to parse it as a class name in that scope. (IMHO this is overkill, but it's there if you want it.)
function broken_constant_use
MyConstants(); % "import" to protect assignment
MyConstants.SECONDS_PER_HOUR = 42 % this bug is a syntax error now
The other gotcha is that classdef properties and methods, especially statics like this, are slow. On my machine, reading this constant is about 100x slower than calling a plain function (22 usec vs. 0.2 usec, see this question). If you're using a constant inside a loop, copy it to a local variable before entering the loop. If for some reason you must use direct access of constants, go with a plain function that returns the value.
For the sake of your sanity, stay away from the preprocessor stuff. Getting that to work inside the Matlab IDE and debugger (which are very useful) would require deep and terrible hacks.
I usually just define a variable with UPPER_CASE and place near the top of the file. But you have to take the responsibly of not changing its value.
Otherwise you can use MATLAB classes to define named constants.
MATLAB doesn't have an exact const equivalent. I recommend NOT using global for constants - for one thing, you need to make sure they are declared everywhere you want to use them. I would create a function that returns the value(s) you want. You might check out this blog post for some ideas.
You might some of these answers How do I create enumerated types in MATLAB? useful. But in short, no there is not a "one-line" way of specifying variables whose value shouldn't change after initial setting in MATLAB.
Any way you do it, it will still be somewhat of a kludge. In past projects, my approach to this was to define all the constants as global variables in one script file, invoke the script at the beginning of program execution to initialize the variables, and include "global MYCONST;" statements at the beginning of any function that needed to use MYCONST. Whether or not this approach is superior to the "official" way of defining a function to return a constant value is a matter of opinion that one could argue either way. Neither way is ideal.
My way of dealing with constants that I want to pass to other functions is to use a struct:
% Define constants
params.PI = 3.1416;
params.SQRT2 = 1.414;
% Call a function which needs one or more of the constants
myFunction( params );
It's not as clean as C header files, but it does the job and avoids MATLAB globals. If you wanted the constants all defined in a separate file (e.g., getConstants.m), that would also be easy:
params = getConstants();
Don't call a constant using myClass.myconst without creating an instance first! Unless speed is not an issue. I was under the impression that the first call to a constant property would create an instance and then all future calls would reference that instance, (Properties with Constant Values), but I no longer believe that to be the case. I created a very basic test function of the form:
tic;
for n = 1:N
a = myObj.field;
end
t = toc;
With classes defined like:
classdef TestObj
properties
field = 10;
end
end
or:
classdef TestHandleObj < handle
properties
field = 10;
end
end
or:
classdef TestConstant
properties (Constant)
field = 10;
end
end
For different cases of objects, handle-objects, nested objects etc (as well as assignment operations). Note that these were all scalars; I didn't investigate arrays, cells or chars. For N = 1,000,000 my results (for total elapsed time) were:
Access(s) Assign(s) Type of object/call
0.0034 0.0042 'myObj.field'
0.0033 0.0042 'myStruct.field'
0.0034 0.0033 'myVar' //Plain old workspace evaluation
0.0033 0.0042 'myNestedObj.obj.field'
0.1581 0.3066 'myHandleObj.field'
0.1694 0.3124 'myNestedHandleObj.handleObj.field'
29.2161 - 'TestConstant.const' //Call directly to class(supposed to be faster)
0.0034 - 'myTestConstant.const' //Create an instance of TestConstant
0.0051 0.0078 'TestObj > methods' //This calls get and set methods that loop internally
0.1574 0.3053 'TestHandleObj > methods' //get and set methods (internal loop)
I also created a Java class and ran a similar test:
12.18 17.53 'jObj.field > in matlab for loop'
0.0043 0.0039 'jObj.get and jObj.set loop N times internally'
The overhead in calling the Java object is high, but within the object, simple access and assign operations happen as fast as regular matlab objects. If you want reference behavior to boot, Java may be the way to go. I did not investigate object calls within nested functions, but I've seen some weird things. Also, the profiler is garbage when it comes to a lot of this stuff, which is why I switched to manually saving the times.
For reference, the Java class used:
public class JtestObj {
public double field = 10;
public double getMe() {
double N = 1000000;
double val = 0;
for (int i = 1; i < N; i++) {
val = this.field;
}
return val;
}
public void setMe(double val) {
double N = 1000000;
for (int i = 1; i < N; i++){
this.field = val;
}
}
}
On a related note, here's a link to a table of NIST constants: ascii table and a matlab function that returns a struct with those listed values: Matlab FileExchange
I use a script with simple constants in capitals and include teh script in other scripts tr=that beed them.
LEFT = 1;
DOWN = 2;
RIGHT = 3; etc.
I do not mind about these being not constant. If I write "LEFT=3" then I wupold be plain stupid and there is no cure against stupidity anyway, so I do not bother.
But I really hate the fact that this method clutters up my workspace with variables that I would never have to inspect. And I also do not like to use sothing like "turn(MyConstants.LEFT)" because this makes longer statements like a zillion chars wide, making my code unreadible.
What I would need is not a variable but a possibility to have real pre-compiler constants. That is: strings that are replaced by values just before executing the code. That is how it should be. A constant should not have to be a variable. It is only meant to make your code more readible and maintainable. MathWorks: PLEASE, PLEASE, PLEASE. It can't be that hard to implement this. . .