Operating System Deadlock - operating-system

I have a confusion in deadlock avoidance technique.
Could we achieve the deadlock avoidance by adding more number of resources?a)Yes
b)No

Deadlock does not equal deadlock, you have to be more specific. For a "classical" deadlock as described in books (two processes trying to access both the screen and the printer at the same time) adding resources does not count as option, because the process needs those specific resources.
Of course, in this example, adding another printer would solve the deadlock. But to be extensible to software development, where a "resource" is something more abstract, like the access to a certain variable, adding resources is not considered a valid option. If two processes need to share access to a variable, it is not possible to introduce another without changing the behavior of the program.

Related

Anylogic forklift collision logging

I need to measure the time forklift spends in collision, however movement_log
for agent type that is a forklift managed by transporter, fleet is not available. I also can not use statecharts because it uses much performance.
Situation: I am simulating a warehouse with one-way aisles and the capacity of these one-way aisles is 2 vehicles. There are situations
where a forklift (the yellow one) needs to wait behind another one in one-way aisle, I currently have that modeled properly I just don't know how to detect this situation and log it.
Thank you
I would do it as following:
Create a new 2-dimensional variable called collisionLog.
Check the speed [getSpeed() function] and state [TransporterState getState() function] every 1 second.
Write these into the collisionLog.
Once the simulation is completed, remove the rows with idle status.
Then do the calculations based on the fact that when speed is zero and transporter is busy, then you have the waiting vehicle.
There is no accessible trigger point (typically an action of a block) to trap when transporters have collisions. Yes, that situation obviously has to be captured internally to enable the transporters to avoid collisions, but in this situation that is not exposed as a block action, or action anywhere else. (AnyLogic space markup elements never have actions, except for some of the newer Material Handling library ones like Station, because these effectively represent a process step.)
The Transporter Control block has all the settings for collision detection and avoidance, but no related actions.
So your alternatives are really
'Scan' for this situation occurring: Yashar's answer, inferring that zero speed when non-idle means 'waiting due to collision' (which may or may not be 100% robust) being one way.
Explicitly break down the movement (from the process perspective) to define the potential 'conflicts' and decision-making within the process flow (e.g., if you're trying to move to an aisle, move to an entrance node, reserve a space in the aisle using resource pools or similar, and only enter when free). Clearly that doesn't cover every possible case, but may be useful in some situations.
The actions that do exist in the Transporter Control block could help a bit here (for both alternatives) since at least you have action points on entering paths and nodes. (You could also raise an enhancement request with AnyLogic to add collision-related actions here....)
I have a huge model with large number of forklifts, checking any attribute every second would result in huge performance loss
I also can not use statecharts because it uses much performance
Have you actually tried it though? Some things do not result in as much of a performance hit as you might think, and performance should not be an a priori 'that will be too slow' thing; ideally you have requirements for acceptable performance and you work round that. (There are always trade-offs between performance, functionality and maintainability.)
[You also don't say how you think using statecharts could have helped. Did you mean doing the 'scanning' approach via a statechart, say with cyclic entry/exit from a Scan state?]

Method to create a list of taskings for resource to work on when resource becomes idle

Image to illustrate point of freezing Context:
Creating a scalable model for a production line to increase Man Machine Optimization ratio. Will be scaling the model for an operator (resource) to work on multiple machines (of the same type). During the process flow at a machine, the operator will be seized and released multiple times for different taskings.
Problem:
Entire process freezes when the operator is being seized at multiple seize blocks concurrently.
Thoughts:
Is there a way to create a list where taskings are added in the event the resource is currently seized. Resource will then work on the list of taskings whenever it becomes idle. Any other methods to resolve this issue is also appreciated!
If this is going to become a complex model, you may want to consider using a pure agent-based approach.
Your resource has a LinkedList of JobRequest agents that are created and send by the machines when necessary. They are sorted by some priority.
The resource then simply does one JobRequest after the next.
No ResourcePools or Seieze elements required.
This is often the more powerful and flexible approach as you are not bound to the process blocks anymore. But obviously, it needs good control and testing from you :)
Problem: Entire process freezes when the operator is being
seized at multiple seize blocks concurrently.
You need to explain your problem better: it is not possible to "seize the same operator at multiple seize blocks concurrently" (unless you are using a resource choice condition or similar to try to 'force' seizing of a particular resource --- even then, this is more accurately framed as 'I've set up resource choice conditions which mean I end up having no valid resources available').
What does your model "freezing" represent? For example, it could just be a natural consequence of having no resources available, especially if you have long delay times or are using Delay blocks with "Until stopDelay() is called" set --- i.e., you are relying on events elsewhere in your model to free agents (and seized resources) from blocks, which an incorrect model design might mean never happen in some circumstances. (If your model is "freezing" because of no resources being available, it should 'unfreeze' when one does.)
During the process flow at a machine, the operator will be
seized and released multiple times for different taskings.
You can just do this bit by breaking down the actions at a machine into a number of Seize/Delay/Release actions with different characteristics (or a process flow that loops around a set of these driven by some data if you want it to be more flexible / data-driven).

How to handle the two signals depending on each other?

I read Deprecating the Observer Pattern with Scala.React and found reactive programming very interesting.
But there is a point I can't figure out: the author described the signals as the nodes in a DAG(Directed acyclic graph). Then what if you have two signals(or event sources, or models, w/e) depending on each other? i.e. the 'two-way binding', like a model and a view in web front-end programming.
Sometimes it's just inevitable because the user can change view, and the back-end(asynchronous request, for example) can change model, and you hope the other side to reflect the change immediately.
The loop dependencies in a reactive programming language can be handled with a variety of semantics. The one that appears to have been chosen in scala.React is that of synchronous reactive languages and specifically that of Esterel. You can have a good explanation of this semantics and its alternatives in the paper "The synchronous languages 12 years later" by Benveniste, A. ; Caspi, P. ; Edwards, S.A. ; Halbwachs, N. ; Le Guernic, P. ; de Simone, R. and available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1173191&tag=1 or http://virtualhost.cs.columbia.edu/~sedwards/papers/benveniste2003synchronous.pdf.
Replying #Matt Carkci here, because a comment wouldn't suffice
In the paper section 7.1 Change Propagation you have
Our change propagation implementation uses a push-based approach based on a topologically ordered dependency graph. When a propagation turn starts, the propagator puts all nodes that have been invalidated since the last turn into a priority queue which is sorted according to the topological order, briefly level, of the nodes. The propagator dequeues the node on the lowest level and validates it, potentially changing its state and putting its dependent nodes, which are on greater levels, on the queue. The propagator repeats this step until the queue is empty, always keeping track of the current level, which becomes important for level mismatches below. For correctly ordered graphs, this process monotonically proceeds to greater levels, thus ensuring data consistency, i.e., the absence of glitches.
and later at section 7.6 Level Mismatch
We therefore need to prepare for an opaque node n to access another node that is on a higher topological level. Every node that is read from during n’s evaluation, first checks whether the current propagation level which is maintained by the propagator is greater than the node’s level. If it is, it proceed as usual, otherwise it throws a level mismatch exception containing a reference to itself, which is caught only in the main propagation loop. The propagator then hoists n by first changing its level to a level above the node which threw the exception, reinserting n into the propagation queue (since it’s level has changed) for later evaluation in the same turn and then transitively hoisting all of n’s dependents.
While there's no mention about any topological constraint (cyclic vs acyclic), something is not clear. (at least to me)
First arises the question of how is the topological order defined.
And then the implementation suggests that mutually dependent nodes would loop forever in the evaluation through the exception mechanism explained above.
What do you think?
After scanning the paper, I can't find where they mention that it must be acyclic. There's nothing stopping you from creating cyclic graphs in dataflow/reactive programming. Acyclic graphs only allow you to create Pipeline Dataflow (e.g. Unix command line pipes).
Feedback and cycles are a very powerful mechanism in dataflow. Without them you are restricted to the types of programs you can create. Take a look at Flow-Based Programming - Loop-Type Networks.
Edit after second post by pagoda_5b
One statement in the paper made me take notice...
For correctly ordered graphs, this process
monotonically proceeds to greater levels, thus ensuring data
consistency, i.e., the absence of glitches.
To me that says that loops are not allowed within the Scala.React framework. A cycle between two nodes would seem to cause the system to continually try to raise the level of both nodes forever.
But that doesn't mean that you have to encode the loops within their framework. It could be possible to have have one path from the item you want to observe and then another, separate, path back to the GUI.
To me, it always seems that too much emphasis is placed on a programming system completing and giving one answer. Loops make it difficult to determine when to terminate. Libraries that use the term "reactive" tend to subscribe to this thought process. But that is just a result of the Von Neumann architecture of computers... a focus of solving an equation and returning the answer. Libraries that shy away from loops seem to be worried about program termination.
Dataflow doesn't require a program to have one right answer or ever terminate. The answer is the answer at this moment of time due to the inputs at this moment. Feedback and loops are expected if not required. A dataflow system is basically just a big loop that constantly passes data between nodes. To terminate it, you just stop it.
Dataflow doesn't have to be so complicated. It is just a very different way to think about programming. I suggest you look at J. Paul Morison's book "Flow Based Programming" for a field tested version of dataflow or my book (once it's done).
Check your MVC knowledge. The view doesn't update the model, so it won't send signals to it. The controller updates the model. For a C/F converter, you would have two controllers (one for the F control, on for the C control). Both controllers would send signals to a single model (which stores the only real temperature, Kelvin, in a lossless format). The model sends signals to two separate views (one for C view, one for F view). No cycles.
Based on the answer from #pagoda_5b, I'd say that you are likely allowed to have cycles (7.6 should handle it, at the cost of performance) but you must guarantee that there is no infinite regress. For example, you could have the controllers also receive signals from the model, as long as you guaranteed that receipt of said signal never caused a signal to be sent back to the model.
I think the above is a good description, but it uses the word "signal" in a non-FRP style. "Signals" in the above are really messages. If the description in 7.1 is correct and complete, loops in the signal graph would always cause infinite regress as processing the dependents of a node would cause the node to be processed and vice-versa, ad inf.
As #Matt Carkci said, there are FRP frameworks that allow loops, at least to a limited extent. They will either not be push-based, use non-strictness in interesting ways, enforce monotonicity, or introduce "artificial" delays so that when the signal graph is expanded on the temporal dimension (turning it into a value graph) the cycles disappear.

Importance of knowing if a standard library function is executing a system call

Is it actually important for a programmer to know if the standard library function he/she is using is actually executing a system call? If so, why?
Intuitively I'm guessing the only importance is in knowing if the general standard function is a library function or a system call itself. In other cases, I'm guessing there isn't much of a need to know if a library functions uses internally a system call?
It is not always possible to know (for sure) if a library function wraps a system call. But in one way or another, this knowledge can help improve the portability and (or) efficiency of your program. At least in the following two cases, knowing the syscall-level behaviours of your program is helpful.
When your program is time critical. Some system calls are expensive, and the library functions that wrap them are even more expensive. Thus time-critical tasks may need to switch to equivalent functions that do not enter kernel space at all.
It is also worth noticing the vsyscall (or vdso) mechanism of linux, which accelerates some system calls (i.e. gettimeofday) through mapping their implementations into user-space memory. See this for more details.
When your program needs to be deployed to some restricted environments with system call auditing. In order for your programs to survive such environments, it could be necessary to profile your program for any potential policy violations, or perhaps less tough if you are aware of the restrictions when you wrote the program.
Sometimes it might be important, and sometimes it isn't. I don't think there's any universal answer to this question. Reasons I can think of that might be important in some contexts are: if the system call requires user permissions that the user might not have; in performance critical code a system call might be too heavyweight; if you're writing a signal-handler where most system calls are forbidden; if it might use some system resource (e.g. reading from /dev/random for every random number could use up the whole entropy pool - you'd want to know if that's going to happen every time you call rand()).

how to create a use case diagram for the forum system

there would be users with different privilages and as a consequence there would be a lot of conditions, so how can i model the conditions in the use case diagrams? for example, the forum manager may create a post or update a post or even delete a post, create a threads or update avialable threads, delete threads, etc.
1- should i have different "use case" elements for each task? i mean add an oval/circle element for each task?? like creating an oval for "create a post", an oval for "updating the post",.....
2- is it correct to have one actor for each privilage?? like one for anonymuse user, one for logged in user, .....
thanks.
You shouldn't get into conditions and ifs and buts in use cases diagrams. A set of use cases is intended to provide an overview of the system's functionality, and each use case describes an interaction between the system and one or more actors. You want to keep that description simple and succinct.
Each use case should in some way make sense to the actor. To a person using a forum, it does make sense that creating a post is a separate activity from updating one (or responding to one), so that seems like a sensible start to me. You should not be overly concerned with the number of use cases at this stage. The number of use cases does not translate directly into system complexity, and a large number of clearly defined use cases is better than a small number of large, ambiguous ones.
The next step is to elaborate your use cases, and that's where you can start talking about conditions. Elaboration is typically done using an activity diagram which describes how the interaction between the actor and the system proceeds, eg Poster initiates post; System checks poster's privileges; System rejects post if privileges are insufficient; etc.
There is of course no right or wrong, but generally speaking it's a bad idea to use actors such as "logged in user" etc, and in fact you should avoid employing a "user" actor at all. Why? Because the interaction is actually between the system and a person, whereas a user (account) is an in-system representation of a person's privileges.
In other words, if you find yourself using actors which are in fact concepts from within the system, you've taken a wrong turn somewhere. Every use case must involve a system-external actor, otherwise you're not describing the system from the outside.
A better set of actors for a forum system would probably be Poster, Reader and Manager (and possibly a System Administrator as well).