I have two machines. Both have their own disks. One machine runs active DB2 and the secondary machine has DB2 installed but not running (only one license). In case the DB goes down, I need to start the secondary DB2 instance. Databases should come back online, it is not so critical that all latest data has been transferred. The
What is the easiest way to do this? One is to shutdown all databases every night and script a backup routine. Another is HADR, but in this case I'm not sure if HADR requires a spearate license, and if the DB2 instance on the secondary machine must be running (not possible because we only have one license)
You can transfer each archived log each time the file is passed to the archive directory in the primary database.
You transfer that file to the log directory in the second machine.
From time to time, you can perform a "roll forward to end of logs", and that will reduce the time in case of a role switch.
You can also backup the primary and transfer that backup to the other machine. But you have to restore it when switching, and this could be very long.
Probably, you can also install Express-C in the second one (Two DB2s installed), and you roll forward or restore periodically with this edition. In case of switch, you just change the db2 instance or create a symbolic link to the binaries in order to activate the db2 features not included in express-c.
Related
Postgres and the default location for its storage is at my C-drive. I would like to restore a backup to another database but to access it via the same Postgres server instance - the issue is that the size of the DB is too big to be restore on the same c-drive ...would it be possible to tell Postgres that the second database should be restore and placed on another location/drive (while still remaining the first one)? Like database1 at my C-drive and database2 at my D-drive?
Otherwise the second best solution would be to install 2 separate Postgres instances - but that also seems a bit overkill?
That should be entirely achievable, if you've used the postgres pg_dump command.
The pg_dump command does not create the database, so you create it yourself first. Use CREATE TABLESPACE to specify the location.
CREATE TABLESPACE secondspace LOCATION 'D:\postgresdata';
CREATE DATABASE seconddb TABLESPACE secondspace;
This creates an empty database on the D: drive.
Then the standard restore from a pg_dump should work:
psql seconddb < dumpfile
Replication
Sounds like you need database replication.
There are several ways to do this with Postgres, one built-in, and other approaches using add-on libraries.
Built-in replication feature
The built-in replication feature is likely to suit your needs. See the manual. In this approach, you have an instance of Postgres running on your primary server, doing reads and writes of your data. On a second server, an entirely separate computer, you run another instance of Postgres known as the replica. You first set up the replica by doing a full backup of your database on the first server, and restore to the second server.
Next you configure the replication feature. The replica needs to know it is playing the role of a replica rather than a regular database server. And the primary server needs to know the replica exists, so that every database change, every insert, modification, and deletion, can be communicated.
WAL
This communication happens via WAL files.
The Write-Ahead Log (WAL) feature in Postgres is where the database writes all changes first to the WAL, and only after that is complete, then writes to the actual database. In case of crash, power outage, or other failure, the database upon restarting can detect a transaction left incomplete. If incomplete, the transaction is rolled back, and the database server can try again by seeing the "To-Do" list of work listed in the WAL.
Every so often the current WAL is closed, with a new WAL file created to take over the work. With replication enabled, the closed WAL file is copied to the replica. The replica then incorporates that WAL file, to follow the same "To-Do" list of changes as written in that WAL file. So all changes are made to the replica database exactly as they were made to the primary database. Your replica is an exact match to the primary, except for a slight lag in time. The replica is always just one WAL file behind the progress of the primary.
In times of trouble, the replica serves as a warm stand-by. You can shutdown the primary, then tell the replica that it is now the primary. You can even configure the replica to be a hot stand-by, meaning it will automatically take-over when the primary seems to have failed. There are pros and cons to hot stand-by.
Offload read-only queries
As a bonus feature, the replica can be used for read-only queries. If your database is heavily used, you can offload some of the work burden from your primary to the replica. Any queries that do not require the absolute latest information can be shifted by connecting to the replica rather than the original. For example, a quarterly sales report likely does not need the latest data stored in the active WAL file that has not yet arrived on the replica.
Physical replication means all databases are copied
Caveat: This built-in replication feature is physical replication. This means all the changes to the entire Postgres installation (formally known as a cluster, not to be confused with a hardware cluster) is copied to the replica. If you use one Postgres server to server multiple databases, all those databases must be replicated – you cannot pick and choose which get copied over. There may be alternative replication features in the future related to logical replication.
More to learn
I am being brief here. The topics of replication, high-availability, and disaster-recovery are broad and complex, too much for an Answer on Stack Overflow.
Tip: This kind of Question might have been better asked on the sister site, DBA.StackExchange.com.
I know the way to set up a Master/Slave DB in Postgres is having 2 DB servers, but unfortunately i have only one server for now.
How can i mirror my production db into another "backup db" in "real_time"? I want to give access to another user to the mirrored db, so even if he does something there it will not affect production.
Nothing stops you setting up hot standby streaming replication, or another replication option like Londiste, between two PostgreSQL instances on the same computer.
The two copies of PostgreSQL must use different ports, but that's the only real restriction.
How to set up the second PostgreSQL instance depends on your operating system and how you installed PostgreSQL, which you have not mentioned.
You'll want to use streaming replication with hot standby if you want a read-only replica. If you want it to be read/write, then you can do a one-off copy of the database with pg_basebackup and not keep them in sync after that. Or you can use a tool like Londiste to replicate changes selectively.
You can run multiple instances of PostgreSQL on the same computer, by using different ports.
We're serving a Django/Postgres site running on a VM hypervisor. We're now trying to figure out our back up strategy and have two probable options:
Back up the DB directly using pg_dump
Back up the VM directly by copying the VM image
I'm with the latter as I think, I could simply back up everything that has to do with the site. I'm not sure whether I have to shut down the VM for this though.
What is a better and more recommended way of backing up a DB? Are there any reasons for not using the VM backup?
Thanks
The question basically boils down to, can you consider a hot copy of PostgreSQL's data files a backup?
The answer is: not really. PostgreSQL tries very hard through the use of WAL to ensure that its files are in a consistent state all the time and that it can survive a power failure, but starting it up from a copy of these files puts PostgreSQL into recovery mode. If the backup happened at the wrong second and PostgreSQL can't recover from the state of these files, your backup is useless. You don't want your backup/restore mechanism to depend on the recovery mechanism (unless you're dealing with "crash only" software, which PostgreSQL is not).
The probability of PostgreSQL not being able to recover from these files is not high, but it's not zero either. The probability of PostgreSQL not being able to load an SQL dump that it made, on the other hand, is zero. I prefer backup choices with lower probabilities of failure. pg_dump was designed for doing backups.
PostgreSQL recommends using pg_dump for backups, as a file system (or VM) backup requires the database to be shut down (and has other drawbacks):
http://www.postgresql.org/docs/8.1/static/backup-file.html
Edit: Also, a pg_dump backup will be significantly smaller than a filesystem dump of the same database.
There is an additional option. With PostgreSQL you can make an online backup that allows you to snapshot the file system and maintain consistency. You can see details here:
http://www.postgresql.org/docs/9.0/static/continuous-archiving.html
We use this exact method for making backups when we run PostgreSQL in a VM.
My live site is using mongodb to store user activities on the site.
I am having a single server running monogdb. I cant afford a second server for master slave replication.
my problem is i want to take the dump of server's mongodb database everyday and restore it to my local machine so that i can query on my local machine.I know how to dump and restore but the issue is every day i have to dump the entire database from server and restore it from the scratch in my local machine ..it takes a lot of time.
so my question is ..is there any way to have incremental backup in mongodb so that i have to dump and restore only single day data as it will take less time.
i do not know much about mongodb, but i have an idea.
i think you can introduce your local mongodb instance as a slave of master production db, and make slave only writable if possible, for preventing live system making selects from your local.
this way can work because slaves keeps track of master writes and deletes and try to make themselves as a copy of master.
And there is a good reason to do that is a slave doesn't have to be online always, when it becomes online, slave will check masters list (this list lenght like 1hour or 1 day is configurable at master) and copy datas from master as quick as possible.
Once you dump master to your local, then you can backup your data twice a day with this method i think.
My company's website uses a PostgreSQL database. In our data center we have a master DB and a few read-only slave DB's, and we use Londiste for continuous replication between them.
I would like to setup another read-only slave DB for reporting purposes, and I'd like this slave to be in a remote location (outside the data center). This slave doesn't need to be 100% up-to-date. If it's up to 24 hours old, that's fine. Also, I'd like to minimize the load I'm putting on the master DB. Since our master DB is busy during the day and idle at night, I figure a good idea (if possible) is to get the reporting slave caught up once each night.
I'm thinking about using log shipping for this, as described on
http://www.postgresql.org/docs/8.4/static/continuous-archiving.html
My plan is:
Setup WAL archiving on the master DB
Produce a full DB snapshot and copy it to the remote location
Restore the DB and get it caught up
Go into steady state where:
DAYTIME -- the DB falls behind but people can query it
NIGHT -- I copy over the day's worth of WAL files and get the DB caught up
Note: the key here is that I only need to copy a full DB snapshot one time. Thereafter I should only have to copy a day's worth of WAL files in order to get the remote slave caught up again.
Since I haven't done log-shipping before I'd like some feedback / advice.
Will this work? Does PostgreSQL support this kind of repeated recovery?
Do you have other suggestions for how to set up a remote semi-fresh read-only slave?
thanks!
--S
Your plan should work.
As Charles says, warm standby is another possible solution. It's supported since 8.2 and has relatively low performance impact on the primary server.
Warm Standby is documented in the Manual: PostgreSQL 8.4 Warm Standby
The short procedure for configuring a
standby server is as follows. For full
details of each step, refer to
previous sections as noted.
Set up primary and standby systems as near identically as possible,
including two identical copies of
PostgreSQL at the same release level.
Set up continuous archiving from the primary to a WAL archive located
in a directory on the standby server.
Ensure that archive_mode,
archive_command and archive_timeout
are set appropriately on the primary
(see Section 24.3.1).
Make a base backup of the primary server (see Section 24.3.2), and load
this data onto the standby.
Begin recovery on the standby server from the local WAL archive,
using a recovery.conf that specifies a
restore_command that waits as
described previously (see Section
24.3.3).
To achieve only nightly syncs, your archive_command should exit with a non-zero exit status during daytime.
Additional Informations:
Postgres Wiki about Warm Standby
Blog Post Warm Standby Setup
9.0's built-in WAL streaming replication is designed to accomplish something that should meet your goals -- a warm or hot standby that can accept read-only queries. Have you considered using it, or are you stuck on 8.4 for now?
(Also, the upcoming 9.1 release is expected to include an updated/rewritten version of pg_basebackup, a tool for creating the initial backup point for a fresh slave.)
Update: PostgreSQL 9.1 will include the ability to pause and resume streaming replication with a simple function call on the slave.