Range Construction Pattern - range

Given the following code
import std.datetime: Clock, SysTime, Duration;
SysTime[] times;
const n = 3;
foreach (i; 0..n) times ~= Clock.currTime;
is there a simpler, perhaps functional, higher order pattern with
which to achieve the same goal?
A bonus would to be, when possible, minimize copyings of the elements perhaps through some in-place construction pattern.
See also: http://forum.dlang.org/thread/yofbijaejfyftpcjdcvd#forum.dlang.org#post-yofbijaejfyftpcjdcvd:40forum.dlang.org
Update:
Ok here's my try so far:
enum arityMin0(alias fun) = __traits(compiles, fun());
auto apply(alias fun, N)(N n) if (isCallable!fun &&
arityMin0!fun &&
!is(ReturnType!fun == void) &&
isIntegral!N)
{
import std.range: iota, map;
return n.iota.map!(n => fun);
}
called as, for instance,
import std.datetime: Clock;
auto times = 3.apply!(Clock.currTime).array;
One detail left. The restriction
arity!fun == 0
evaluate to false in
auto times = 3.apply!(Clock.currTime).array;
because arity is actually either 0 and 1 here.
So arity!fun evaluates to 1 in this case because Clock.currTime takes a defaulted argument.
Maybe we need arityMin and arityMax in std.traits aswell.
In that case should I use __traits(compiles to implement arityMin?

Evaluating currTime thrice:
auto times = 3.iota.map!(n => Clock.currTime).array();
Evaluating currTime once:
auto times = Clock.currTime.repeat(3).array();

Related

"Find the Parity Outlier Code Wars (Scala)"

I am doing some of CodeWars challenges recently and I've got a problem with this one.
"You are given an array (which will have a length of at least 3, but could be very large) containing integers. The array is either entirely comprised of odd integers or entirely comprised of even integers except for a single integer N. Write a method that takes the array as an argument and returns this "outlier" N."
I've looked at some solutions, that are already on our website, but I want to solve the problem using my own approach.
The main problem in my code, seems to be that it ignores negative numbers even though I've implemented Math.abs() method in scala.
If you have an idea how to get around it, that is more than welcome.
Thanks a lot
object Parity {
var even = 0
var odd = 0
var result = 0
def findOutlier(integers: List[Int]): Int = {
for (y <- 0 until integers.length) {
if (Math.abs(integers(y)) % 2 == 0)
even += 1
else
odd += 1
}
if (even == 1) {
for (y <- 0 until integers.length) {
if (Math.abs(integers(y)) % 2 == 0)
result = integers(y)
}
} else {
for (y <- 0 until integers.length) {
if (Math.abs(integers(y)) % 2 != 0)
result = integers(y)
}
}
result
}
Your code handles negative numbers just fine. The problem is that you rely on mutable sate, which leaks between runs of your code. Your code behaves as follows:
val l = List(1,3,5,6,7)
println(Parity.findOutlier(l)) //6
println(Parity.findOutlier(l)) //7
println(Parity.findOutlier(l)) //7
The first run is correct. However, when you run it the second time, even, odd, and result all have the values from your previous run still in them. If you define them inside of your findOutlier method instead of in the Parity object, then your code gives correct results.
Additionally, I highly recommend reading over the methods available to a Scala List. You should almost never need to loop through a List like that, and there are a number of much more concise solutions to the problem. Mutable var's are also a pretty big red flag in Scala code, as are excessive if statements.

Scala - conditionally sum elements in list

I am trying to solve a beginner problem with lists but can't find an example to help me get it work. I am given a list of positive and negative integers (AccountHistory) and I need to check if the negative integers in this list have ever exceeded -1000. I expected my code to work with a freshly introduced helper function like this:
def checkAccount(account: AccountHistory): Boolean = {
def helper(i: AccountHistory): Int = {
var total = 0
i.collect{case x if x < 0 => Math.abs(x) + total}
return total
}
if (helper(account) >1000) true else false
}
But it doesn't work. Please help me find my mistake or problem in wrong approach.
Edit: The pre-given tests include
assert(checkAccount(List(10,-5,20)))
assert(!checkAccount(List(-1000,-1)))
So if assert expects true then my approach is wrong to solve it like this.
By 'exceeded' I mean <-1000, for any or all elements in a list (like exceeding a credit amount in given period).
i.collect{case x if x < 0 => Math.abs(x) + total}
In the above code snippet, not assign back to total, maybe you need:
val total = i.filter(_ < 0).map(Math.abs).sum
I think this is what you're supposed to do:
def checkAccount(account: AccountHistory): Boolean =
account.forall(_ > -1000)

Merge Sort algorithm efficiency

I am currently taking an online algorithms course in which the teacher doesn't give code to solve the algorithm, but rather rough pseudo code. So before taking to the internet for the answer, I decided to take a stab at it myself.
In this case, the algorithm that we were looking at is merge sort algorithm. After being given the pseudo code we also dove into analyzing the algorithm for run times against n number of items in an array. After a quick analysis, the teacher arrived at 6nlog(base2)(n) + 6n as an approximate run time for the algorithm.
The pseudo code given was for the merge portion of the algorithm only and was given as follows:
C = output [length = n]
A = 1st sorted array [n/2]
B = 2nd sorted array [n/2]
i = 1
j = 1
for k = 1 to n
if A(i) < B(j)
C(k) = A(i)
i++
else [B(j) < A(i)]
C(k) = B(j)
j++
end
end
He basically did a breakdown of the above taking 4n+2 (2 for the declarations i and j, and 4 for the number of operations performed -- the for, if, array position assignment, and iteration). He simplified this, I believe for the sake of the class, to 6n.
This all makes sense to me, my question arises from the implementation that I am performing and how it effects the algorithms and some of the tradeoffs/inefficiencies it may add.
Below is my code in swift using a playground:
func mergeSort<T:Comparable>(_ array:[T]) -> [T] {
guard array.count > 1 else { return array }
let lowerHalfArray = array[0..<array.count / 2]
let upperHalfArray = array[array.count / 2..<array.count]
let lowerSortedArray = mergeSort(array: Array(lowerHalfArray))
let upperSortedArray = mergeSort(array: Array(upperHalfArray))
return merge(lhs:lowerSortedArray, rhs:upperSortedArray)
}
func merge<T:Comparable>(lhs:[T], rhs:[T]) -> [T] {
guard lhs.count > 0 else { return rhs }
guard rhs.count > 0 else { return lhs }
var i = 0
var j = 0
var mergedArray = [T]()
let loopCount = (lhs.count + rhs.count)
for _ in 0..<loopCount {
if j == rhs.count || (i < lhs.count && lhs[i] < rhs[j]) {
mergedArray.append(lhs[i])
i += 1
} else {
mergedArray.append(rhs[j])
j += 1
}
}
return mergedArray
}
let values = [5,4,8,7,6,3,1,2,9]
let sortedValues = mergeSort(values)
My questions for this are as follows:
Do the guard statements at the start of the merge<T:Comparable> function actually make it more inefficient? Considering we are always halving the array, the only time that it will hold true is for the base case and when there is an odd number of items in the array.
This to me seems like it would actually add more processing and give minimal return since the time that it happens is when we have halved the array to the point where one has no items.
Concerning my if statement in the merge. Since it is checking more than one condition, does this effect the overall efficiency of the algorithm that I have written? If so, the effects to me seems like they vary based on when it would break out of the if statement (e.g at the first condition or the second).
Is this something that is considered heavily when analyzing algorithms, and if so how do you account for the variance when it breaks out from the algorithm?
Any other analysis/tips you can give me on what I have written would be greatly appreciated.
You will very soon learn about Big-O and Big-Theta where you don't care about exact runtimes (believe me when I say very soon, like in a lecture or two). Until then, this is what you need to know:
Yes, the guards take some time, but it is the same amount of time in every iteration. So if each iteration takes X amount of time without the guard and you do n function calls, then it takes X*n amount of time in total. Now add in the guards who take Y amount of time in each call. You now need (X+Y)*n time in total. This is a constant factor, and when n becomes very large the (X+Y) factor becomes negligible compared to the n factor. That is, if you can reduce a function X*n to (X+Y)*(log n) then it is worthwhile to add the Y amount of work because you do fewer iterations in total.
The same reasoning applies to your second question. Yes, checking "if X or Y" takes more time than checking "if X" but it is a constant factor. The extra time does not vary with the size of n.
In some languages you only check the second condition if the first fails. How do we account for that? The simplest solution is to realize that the upper bound of the number of comparisons will be 3, while the number of iterations can be potentially millions with a large n. But 3 is a constant number, so it adds at most a constant amount of work per iteration. You can go into nitty-gritty details and try to reason about the distribution of how often the first, second and third condition will be true or false, but often you don't really want to go down that road. Pretend that you always do all the comparisons.
So yes, adding the guards might be bad for your runtime if you do the same number of iterations as before. But sometimes adding extra work in each iteration can decrease the number of iterations needed.

Which costs more while looping; assignment or an if-statement?

Consider the following 2 scenarios:
boolean b = false;
int i = 0;
while(i++ < 5) {
b = true;
}
OR
boolean b = false;
int i = 0;
while(i++ < 5) {
if(!b) {
b = true;
}
}
Which is more "costly" to do? If the answer depends on used language/compiler, please provide. My main programming language is Java.
Please do not ask questions like why would I want to do either.. They're just barebone examples that point out the relevant: should a variable be set the same value in a loop over and over again or should it be tested on every loop that it holds a value needed to change?
Please do not forget the rules of Optimization Club.
The first rule of Optimization Club is, you do not Optimize.
The second rule of Optimization Club is, you do not Optimize without measuring.
If your app is running faster than the underlying transport protocol, the optimization is over.
One factor at a time.
No marketroids, no marketroid schedules.
Testing will go on as long as it has to.
If this is your first night at Optimization Club, you have to write a test case.
It seems that you have broken rule 2. You have no measurement. If you really want to know, you'll answer the question yourself by setting up a test that runs scenario A against scenario B and finds the answer. There are so many differences between different environments, we can't answer.
Have you tested this? Working on a Linux system, I put your first example in a file called LoopTestNoIf.java and your second in a file called LoopTestWithIf.java, wrapped a main function and class around each of them, compiled, and then ran with this bash script:
#!/bin/bash
function run_test {
iter=0
while [ $iter -lt 100 ]
do
java $1
let iter=iter+1
done
}
time run_test LoopTestNoIf
time run_test LoopTestWithIf
The results were:
real 0m10.358s
user 0m4.349s
sys 0m1.159s
real 0m10.339s
user 0m4.299s
sys 0m1.178s
Showing that having the if makes it slight faster on my system.
Are you trying to find out if doing the assignment each loop is faster in total run time than doing a check each loop and only assigning once on satisfaction of the test condition?
In the above example I would guess that the first is faster. You perform 5 assignments. In the latter you perform 5 test and then an assignment.
But you'll need to up the iteration count and throw in some stopwatch timers to know for sure.
Actually, this is the question I was interested in… (I hoped that I’ll find the answer somewhere to avoid own testing. Well, I didn’t…)
To be sure that your (mine) test is valid, you (I) have to do enough iterations to get enough data. Each iteration must be “long” enough (I mean the time scale) to show the true difference. I’ve found out that even one billion iterations are not enough to fit to time interval that would be long enough… So I wrote this test:
for (int k = 0; k < 1000; ++k)
{
{
long stopwatch = System.nanoTime();
boolean b = false;
int i = 0, j = 0;
while (i++ < 1000000)
while (j++ < 1000000)
{
int a = i * j; // to slow down a bit
b = true;
a /= 2; // to slow down a bit more
}
long time = System.nanoTime() - stopwatch;
System.out.println("\\tasgn\t" + time);
}
{
long stopwatch = System.nanoTime();
boolean b = false;
int i = 0, j = 0;
while (i++ < 1000000)
while (j++ < 1000000)
{
int a = i * j; // the same thing as above
if (!b)
{
b = true;
}
a /= 2;
}
long time = System.nanoTime() - stopwatch;
System.out.println("\\tif\t" + time);
}
}
I ran the test three times storing the data in Excel, then I swapped the first (‘asgn’) and second (‘if’) case and ran it three times again… And the result? Four times “won” the ‘if’ case and two times the ‘asgn’ appeared to be the better case. This shows how sensitive the execution might be. But in general, I hope that this has also proven that the ‘if’ case is better choice.
Thanks, anyway…
Any compiler (except, perhaps, in debug) will optimize both these statements to
bool b = true;
But generally, relative speed of assignment and branch depend on processor architecture, and not on compiler. A modern, super-scalar processor perform horribly on branches. A simple micro-controller uses roughly the same number of cycles per any instruction.
Relative to your barebones example (and perhaps your real application):
boolean b = false;
// .. other stuff, might change b
int i = 0;
// .. other stuff, might change i
b |= i < 5;
while(i++ < 5) {
// .. stuff with i, possibly stuff with b, but no assignment to b
}
problem solved?
But really - it's going to be a question of the cost of your test (generally more than just if (boolean)) and the cost of your assignment (generally more than just primitive = x). If the test/assignment is expensive or your loop is long enough or you have high enough performance demands, you might want to break it into two parts - but all of those criteria require that you test how things perform. Of course, if your requirements are more demanding (say, b can flip back and forth), you might require a more complex solution.

What is the preferred order for operands in boolean expressions?

Is there any benefit to structuring boolean expressions like:
if (0 < x) { ... }
instead of
if (x > 0) { ... }
I have always used the second way, always putting the variable as the first operand and using whatever boolean operator makes sense, but lately I have read code that uses the first method, and after getting over the initial weirdness I am starting to like it a lot more.
Now I have started to write all my boolean expressions to only use < or <= even if this means the variable isn't the first operand, like the above example. To me it seems to increase readability, but that might just be me :)
What do other people think about this?
Do whatever is most natural for whatever expression you are trying to compare.
If you're wondering about other operations (like ==) there are previous topics comparing the orderings of operands for those comparisons (and the reasons why).
It is mostly done to avoid the problem of using = instead of == in if conditions. To keep the consistency many people use the same for with other operators also. I do not see any problem in doing it.
Use whatever 'reads' best. One thing I'd point out is that if I'm testing to see if a value is within bounds, I try to write it so the bounds are on the 'outside' just like they might be in a mathematical expression:
So, to test that (0 < x <= 10):
if ((0 < x) && (x <= 10)) { ... }
instead of
if ((0 < x) && (10 >= x)) { ... }
or
if ((x > 0) && (10 >= x)) { ... }
I find this pattern make is somewhat easier to follow the logic.
An advantage for putting the number first is that it can prevent bug of using = when == is wanted.
if ( 0 == x ) // ok
if ( 0 = x ) //is a compiler error
compare to the subtle bug:
if ( x = 0 ) // assignment and not comparison. most likely a typo
To be honest it's unusual to write expressions with the variable on the right-side, and as a direct consequence of that unusualness readability suffers. Coding conventions have intrinsic value merely by virtue of being conventions; people are used to code being written in particular standard ways, x >= 0 being one example. Unnecessarily deviating from simple norms like these should be avoided without good cause.
The fact that you had to "get over the initial weirdness" should perhaps be a red flag.
I would not write 0 < x just as I would not use Hungarian notation in Java. When in Rome, do as the Romans do. The Romans write x >= 0. No, it's not a huge deal, it just seems like an unnecessary little quirk.