Peak detection in an audio signal - matlab

I need to find the maximum peak of an audio signal using matlab. I have got the input using wavread command and converted the signal into frequency domain using FFT. After finding the magnitude of it, I need to store the peak value for further calculation. How can I do this?

I'm guessing your IN_MAG is not a real vector, meaning you are storing both real and imaginary part of your FFT. I would advice you to read the doc fft of matlab documentation so you can create a proper vector.
In case you can complete this, if you want a unique peak, the maximum, just use the function max. In case not you can personalize what you what to find,
Let's say finding the first 3 peaks with minimum height of 0.5 and with a distance of 10 points from each other,
[pks, locs] = findpeaks(IN_MAG, 'NPEAKS', 3, 'MINPEAKHEIGHT', 0.5, 'MINPEAKDISTANCE', 10);
Then pks is your y and locs is your x coordenate from your peaks.
EDIT:
As to FFT,
Let's say sig is your signal,
t = linspace(0,L/Fs,L); % Fs is the sampling rate in Hz and L the signal length
NFFT = 2^nextpow2(L);
f = Fs/2*linspace(0,1,NFFT/2+1);
fft_sig = fft(sig, NFFT)/L;
magnitude_sig = = 2*abs(fft_sig(1:NFFT/2+1));
this is your correct fft magnitude signal.

Related

How can i use fft to find the maximum frequency of a periodic signal?

I'm trying to find the maximum frequency of a periodic signal in Matlab and as i know when you convert a periodic signal to the frequency spectrum you get only delta functions however i get a few curves between the produced delta functions. Here is the code :
t=[-0.02:10^-3:0.02];
s=5.*(1+cos(2*pi*10*t)).*cos(2*pi*100*t);
figure, subplot(211), plot(t,s);
y=fft(s);
subplot(212), plot(t,y);
Here is a code-snippet to help you understand how to get the frequency-spectrum using fft in matlab.
Things to remember are:
You need to decide on a sampling frequency, which should be high enough, as per the Nyquist Criterion (You need the number of samples, at least more than twice the highest frequency or else we will have aliasing). That means, fs in this example cannot be below 2 * 110. Better to have it even higher to see a have a better appearance of the signal.
For a real signal, what you want is the power-spectrum obtained as the square of the absolute of the output of the fft() function. The imaginary part, which contains the phase should contain nothing but noise. (I didn't plot the phase here, but you can do this to check for yourself.)
Finally, we need to use fftshift to shift the signal such that we get the mirrored spectrum around the zero-frequency.
The peaks would be at the correct frequencies. Now considering only the positive frequencies, as you can see, we have the largest peak at 100Hz and two further lobs around 100Hz +- 10Hz i.e. 90Hz and 110Hz.
Apparently, 110Hz is the highest frequency, in your example.
The code:
fs = 500; % sampling frequency - Should be high enough! Remember Nyquist!
t=[-.2:1/fs:.2];
s= 5.*(1+cos(2*pi*10*t)).*cos(2*pi*100*t);
figure, subplot(311), plot(t,s);
n = length(s);
y=fft(s);
f = (0:n-1)*(fs/n); % frequency range
power = abs(y).^2/n;
subplot(312), plot(f, power);
Y = fftshift(y);
fshift = (-n/2:n/2-1)*(fs/n); % zero-centered frequency range
powershift = abs(Y).^2/n;
subplot(313), plot(fshift, powershift);
The output plots:
The first plot is the signal in the time domain
The signal in the frequency domain
The shifted fft signal

How to find the period of a periodic function using FFT?

Assume I have a smooth function (represented as a vector):
x=0:0.1:1000;
y=sin(2*x);
and I want to find its periodicity - pi (or even its frequency -2 ) .
I have tried the following:
nfft=1024;
Y=fft(y,nfft);
Y=abs(Y(1:nfft/2));
plot(Y);
but obviously it doesn't work (the plot does not give me a peak at "2" ).
Will you please help me find a way to find the value "2"?
Thanks in advance
You have several issues here:
You are computing the fft of x when your actual signal is y
x should be in radians
You need to define a sampling rate and use that to determine the frequency values along the x axis
So once we correct all of these things, we get:
samplingRate = 1000; % Samples per period
nPeriods = 10;
nSamples = samplingRate * nPeriods;
x = linspace(0, 2*pi*nPeriods, nSamples);
y = sin(2*x);
F = fft(y);
amplitude = abs(F / nSamples);
f = samplingRate / nSamples*[0:(nSamples/2-1),-nSamples/2:-1];
plot(f, amplitude)
In general, you can't use an FFT alone to find the period of a periodic signal. That's because an FFT does sinusoidal basis decomposition (or basis transform), and lots of non-sinusoidal waveforms (signals that look absolutely nothing like a sinewave or single sinusoidal basis vector) can be repeated to form a periodic function, waveform, or signal. Thus, it's quite possible for the frequency of a periodic function or waveform to not show up at all in an FFT result (it's called the missing fundamental problem).
Only in the case of a close or near sinusoidal signal will an FFT reliably report the reciprocal of the period of that periodic function.
There are lots of pitch detection/estimation algorithms. You can use an FFT as a sub-component of some composite methods, including cepstrums or cepstral analysis, and Harmonic Product Spectrum pitch detection methods.

FFT does not return the amplitudes in matlab?

I have generated the following time signal:
Now I want to perform a Discrete Fourier Transform by using the matlab command fft
Here is my code:
function [ xdft, omega ] = FastFourier( t, fs )
%% Inputs from other functions %%
[P_mean, x, u] = MyWay( t ) %From here comes my signal x(t)
%% FFT %%
xdft1 = fft(x); % Perform FFT
xdft2 = abs(xdft1); % Take the absolute value of the fft results
xdft = xdft2(1:length(x)/2+1); % FFT is symmetric, second half is not needed
freq = 0:fs/length(x):fs/2; % frequency axis
plot (freq(1:100),xdft(1:100));
end
And here is the plot that I get:
And what is puzzling to me is the y axis? Shouldn't the y axis represent the amplitudes of the frequency components? Is there a way to get the amplitudes of all the frequency components?
Thanks!
EDIT:
I have found that some people do the following:
n = size(x,2)/2; %The number of components and second half can be neglected again
xdft2 = abs(xdft1)/n;
This way I seem to get the amplitude spectrum, but why do I have to divide the absolute value by n?
FFT gives you a complex pair in each Frequency Bin. The first bin in the FFT is like the DC part of your signal (around 0 Hz), the second bin is Fs / N, where Fs is the sample rate and Nis the windowsize of the FFT, next bin is 2 * Fs / N and so on.
What you calc with the abs() of such a pair is the power contained in a bin.
you might also want to check this out: Understanding Matlab FFT example
Most (not all) FFT libraries preserve total energy (Parseval's theorem), which means that the magnitude has to get bigger for longer FFT windows (longer stationary waveform -> more energy). So you have to divide the result by N to get a more "natural" looking magnitude height of sinewaves in the spectrum.
If you want the amplitudes of the harmonics, then you need to plot real(xdft1) and imag(xdft1). Real(xdft1) gives you coefficients of all the cosine harmonics present in your signal, from -Fs/2 to +Fs/2, (we assume your Fs is large enough to cover all frequencies in the signal) and the imag(xdft) give the amplitudes of the sines.
What you are doing is giving you the magnitude of the signal, which is the RMS value of the total energy at a bin in both the real and imaginary frequency component.
Its often the item of most interest to people looking at a spectrum.
Basics of this: (https://www.youtube.com/watch?v=ZKNzMyS9Z6s&t=1629s)

Can I adjust spectogram frequency axes?

The MATLAB documentation examples for the spectrogram function gives examples that have the frequency axis set to [0 500]. Can I change this to something like [0 100]? Obviously running the axis command will do this for me, but that adjusts the end result and "blows up" the resultant plot, make it pixelated. I am basically looking to build a spectrogram that only looks for frequencies between 0-100, not rescaling after building the spectrogram.
Here's an example from that documentation:
T = 0:0.001:2;
X = chirp(T,0,1,150);
spectrogram(X,256,250,256,1E3,'yaxis');
This produces the following:
Everything below 350Hz is unneeded. Is there a way to not include everything between 350 to 500 when building the spectrogram, rather than adjusting axes after the fact?
From the documentation:
[S,F,T] = spectrogram(x,window,noverlap,F) uses a vector F of frequencies in Hz. F must be a vector with at least two elements. This case computes the spectrogram at the frequencies in F using the Goertzel algorithm. The specified frequencies are rounded to the nearest DFT bin commensurate with the signal's resolution. In all other syntax cases where nfft or a default for nfft is used, the short-time Fourier transform is used. The F vector returned is a vector of the rounded frequencies. T is a vector of times at which the spectrogram is computed. The length of F is equal to the number of rows of S. The length of T is equal to k, as defined above and each value corresponds to the center of each segment.
Does that help you?
The FFT is so fast that it is better to increase the resolution and then just discard the unwanted data. If you need better spectral resolution (more frequency bins) then increase the FFT size. To get smoother looking spectrum in time dimension, increase the noverlap value to reduce the increments for each consequtive FFT. In this case you would not specify the F. If FFT size is 1024 then you get 1024/2+1 frequency bins.
FFTN = 512;
start = 512*(350/500); % Only care about freq bins above this value
WIN_SIZE = FFTN;
overlap = floor(FFTN*0.8);
[~,F,T,P] = spectrogram(y, WIN_SIZE, overlap, FFTN);
f = 0:(length(F)-1);
f = f*((Fs/2)/length(F));
P = P(start:512,:);
f = f(1,start:512);
imagesc(T,f,10*log10(P),[-70 20]);

Frequency response using FFT in MATLAB

Here is the scenario: using a spectrum analyzer i have the input values and the output values. the number of samples is 32000 and the sampling rate is 2000 samples/sec, and the input is a sine wave of 50 hz, the input is current and the output is pressure in psi.
How do i calculate the frequency response from this data using MATLAB,
using the FFT function in MATLAB.
i was able to generate a sine wave, that gives out the the magnitude and phase angles, here is the code that i used:
%FFT Analysis to calculate the frequency response for the raw data
%The FFT allows you to efficiently estimate component frequencies in data from a discrete set of values sampled at a fixed rate
% Sampling frequency(Hz)
Fs = 2000;
% Time vector of 16 second
t = 0:1/Fs:16-1;
% Create a sine wave of 50 Hz.
x = sin(2*pi*t*50);
% Use next highest power of 2 greater than or equal to length(x) to calculate FFT.
nfft = pow2(nextpow2(length(x)))
% Take fft, padding with zeros so that length(fftx) is equal to nfft
fftx = fft(x,nfft);
% Calculate the number of unique points
NumUniquePts = ceil((nfft+1)/2);
% FFT is symmetric, throw away second half
fftx = fftx(1:NumUniquePts);
% Take the magnitude of fft of x and scale the fft so that it is not a function of the length of x
mx = abs(fftx)/length(x);
% Take the square of the magnitude of fft of x.
mx = mx.^2;
% Since we dropped half the FFT, we multiply mx by 2 to keep the same energy.
% The DC component and Nyquist component, if it exists, are unique and should not be multiplied by 2.
if rem(nfft, 2) % odd nfft excludes Nyquist point
mx(2:end) = mx(2:end)*2;
else
mx(2:end -1) = mx(2:end -1)*2;
end
% This is an evenly spaced frequency vector with NumUniquePts points.
f = (0:NumUniquePts-1)*Fs/nfft;
% Generate the plot, title and labels.
subplot(211),plot(f,mx);
title('Power Spectrum of a 50Hz Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
% returns the phase angles, in radians, for each element of complex array fftx
phase = unwrap(angle(fftx));
PHA = phase*180/pi;
subplot(212),plot(f,PHA),title('frequency response');
xlabel('Frequency (Hz)')
ylabel('Phase (Degrees)')
grid on
i took the frequency response from the phase plot at 90 degree phase angle, is this the right way to calculate the frequency response?
how do i compare this response to the values that is obtained from the analyzer? this is a cross check to see if the analyzer logic makes sense or not.
Looks OK at first glance, but a couple of things you're missing:
you should apply a window function to the time domain data before the FFT, see e.g. http://en.wikipedia.org/wiki/Window_function for windowing in general and http://en.wikipedia.org/wiki/Hann_window for the most commonly used window function (Hann aka Hanning).
you probably want to plot log magnitude in dB rather than just raw magnitude
You should consider looking at the cpsd() function for calculating the Frequency response. The scaling and normalisation for various window functions is handled for you.
the Frequency reponse would then be
G = cpsd (output,input) / cpsd (input,input)
then take the angle() to obtain the phase difference between the input and the output.
Your code snippet does not mention what the input and output data sets are.