Reconstructing time series from FFT in MATLAB - matlab

I am trying to reconstruct the sunspots signal from the FFT, the time series and periodogram are in the following site http://www.mathworks.com/help/matlab/examples/using-fft.html . I wrote the following code but the result were not similar to original wave:
YY=Y(1:floor(n/2))
% magnitude
mag_fft = 2*abs(YY)/length(Y);
% phase angle
ang_fft = angle(YY);
[new_mag,new_i]=sort(mag_fft,'descend');
new_ang=ang_fft(new_i);
new_freq=freq(new_i)
wave=zeros(1,length(YY));
wave=new_mag(1);
t=1:length(YY)
for(i=1:70)
wave=wave+new_mag(i).*sin(2*pi*new_freq(i)*t+new_ang(i));
end
wave=wave-mag_fft(1)
figure;plot(year(t),wave,'-b')
hold on;plot(year(t),relNums(t),'-r')
any ideas?

%http://www.mathworks.com/help/matlab/examples/using-fft.html
% sunspots
% sunspots have period of 10 years
%%
clc;clear all;close all;
load sunspot.dat
year=sunspot(:,1);
relNums=sunspot(:,2);
figure;plot(year,relNums)
title('Sunspot Data')
plot(year(1:50),relNums(1:50),'b.-');
yfft = fft(relNums);%figure;plot(ifft(yfft)-data1d,'r')
%yfft = fft(data1d); iyfft=ifft(yfft);
[sum(relNums) yfft(1)]
yfft(1)=[]; % we grid rid of the first value as it corresponeding to zero frequency.
N=length(yfft)+1;
yfft=yfft.*2./N;
%%
power_fft = abs(yfft);power1_fft = sqrt(yfft.*conj(yfft));
figure;plot(power_fft,'-b');hold on;plot(power_fft,'rO')
ang_fft = angle(yfft);real_fft= real(yfft);imag_fft= imag(yfft);
figure;plot(real_fft);hold on;plot(imag_fft,'-r')
figure;plot(angle(yfft))
ph = (180/pi)*unwrap(ang_fft); % phase in degrees
% Now the total length of the per and all other powers should be N-1 because there is no
% more corresponding poweres and phases, and the number of frequencies before the nequiest is
Nneq=length(N./(1:N/2));
Nm1=N-1; per=N./(1:Nm1); freq=1./per;
[per'/12 power_fft(1:Nm1)/100 ] % so as to display the period in years
%% ytyt
ndat=length(relNums);
x=0:ndat-1;
sumharmony1(1:Nneq,1:ndat)=0;
sumharmony2(1:Nneq,1:ndat)=0;
for i=1:Nneq
% those two forms are equal, the last one is called the cos form.
% sumharmony1(i,:)=sumharmony1(i,:)+real_fft(i)*cos(2*pi*x/(per(i)))- imag_fft(i)*sin(2*pi*x/(per(i)));
sumharmony1(i,:)=sumharmony1(i,:)+power_fft(i)*cos(2*pi*x./(per(i))+ang_fft(i));
end
y1 =sum(relNums)/N+ sum(sumharmony1);
%y2 =sum(tmp)/N+ sum(sumharmony2);
figure;plot(relNums);hold on; plot( y1, 'r');
figure;plot((relNums-y1')) % However, the excellent results, we couldnot yet reach to the that of the built in function ifft.
figure;plot(relNums(1:100),'-ob');hold on; plot( y1(1:100), 'r');
% note that we multiply by 2 because of using the window hanning.enter code here

Related

Obtaining steady state solution for spring mass dashpot system

I'm trying to solve the following problem using MATLAB but I faced multiple issues. The plot I obtained doesn't seem right even though I tried to obtain the steady-state solution, I got a plot that doesn't look steady.
The problem I'm trying to solve
The incorrect plot I got.
and here is the code
% system parameters
m=1; k=1; c=.1; wn=sqrt(k/m); z=c/2/sqrt(m*k); wd=wn*sqrt(1-z^2);
% initial conditions
x0=0; v0=0;
%% time
dt=.001; tMax=8*pi; t=0:(tMax-0)/999:tMax;
% input
A=1
omega=(2*pi)/10
F=A/2-(4*A/pi^2)*cos(omega*t); Fw=fft(F);
F=k*A*cos(omega*t); Fw=fft(F);
% normalize
y = F/m;
% compute coefficients proportional to the Fourier series coefficients
Yw = fft(y);
% setup the equations to solve the particular solution of the differential equation
% by the method of undetermined coefficients
N=1000
T=10
k = [0:N/2];
w = 2*pi*k/T;
A = wn*wn-w.*w;
B = 2*z*wn*w;
% solve the equation [A B;-B A][real(Xw); imag(Xw)] = [real(Yw); imag(Yw)] equation
% Note that solution can be obtained by writing [A B;-B A] as a scaling + rotation
% of a 2D vector, which we solve using complex number algebra
C = sqrt(A.*A+B.*B);
theta = acos(A./C);
Ywp = exp(j*theta)./C.*Yw([1:N/2+1]);
% build a hermitian-symmetric spectrum
Xw = [Ywp conj(fliplr(Ywp(2:end-1)))];
% bring back to time-domain (function synthesis from Fourier Series coefficients)
x = ifft(Xw);
figure()
plot(t,x)
Your forcing function doesn't look like the triangle wave in the problem. I edited the %% time section of your code into the following and appeared to give a steady state response.
%% time
TP = 10; % forcing time period (10 s)
dt=.001;
tMax= 3*TP; % needs to be multiple of the time period
t=0:(tMax-0)/999:tMax;
% input
A=1; % Forcing amplitude
omega=(2*pi)/TP;
% forcing is a triangle wave
% generate a triangle wave with min/max values of 0/1.
F = 0*t;
for i = 1:length(t)
if mod(t(i), TP) <= TP/2
F(i) = mod(t(i), TP)/(TP/2);
else
F(i) = 2 - mod(t(i), TP)/(TP/2);
end
end
F = F*A; % scale triangle wave by amplitude
% you can also use MATLAB's sawtooth() function if you have the signal
% processing toolbox

Applying bandpass in the Fourier for my signal in matlab

I'm trying to apply a bandpass around freq 0 without luck. I'd be happy to receive some help please
x=scan11(1,:)*1e-3/3e8; y=scan11(2,:);
plot(x,y) % my function
[XX,ff]=trans_fourier(y,mean(diff(x)));
plot(ff,abs(XX)) % gives the Fourier transform
I want to choose the freq around 0. let's suppose -1e13 till 1e13 and than to make ifft and to plot the signal after this filer.
How should I start doing this? the command
YY=bandpass(y,[-1e13 1e13],1/mean(diff(x)))
didn't help here unfortunately.
Since, i can't upload here files, here is also my question on matlab forum with all the files
matlab link
I am not sure what the contents of the trans_fourier function exactly are, but in 'plain matlab functions', you could attempt something along the lines of the following.
Nt = 1024; % Number of samples
Fs = 10; % Sampling frequency (samples / second)
t = (0:Nt-1)/Fs; % Time array
x = sin(t/10); % Low-frequency signal
x = x + 0.25*randn(1,Nt); % add some noise
X = fftshift(fft(x)); % FFT of signal with 0 Hz centered
fr = (-Nt/2 : Nt/2-1)/(Nt/Fs); % Frequency axis
% Filter: squared cosine (edit as desired)
fsl = 10; % Length of filter slope, in samples
filt = zeros(size(X));
filt(Nt/2+1+(-fsl:fsl)) = cos( linspace(-pi/2,pi/2,2*fsl+1) ).^2;
x_filt = real(ifft(ifftshift( filt.*X ))); % Filtered x
figure();
subplot(2,2,1); plot(t,x); ax=axis; title('original signal');
subplot(2,2,4); plot(t,x_filt); axis(ax); title('Low-pass filtered signal');
subplot(2,2,2); plot(fr,abs(X)); ax=axis; title('original amplitude spectrum');
subplot(2,2,3); plot(fr,abs(X).*filt); axis(ax); title('Filtered amplitude spectrum');
I am not sure what exactly you meant when you said
let's suppose -1e13 till 1e13
, but keep in mind that extracting a single fourier component (essentially setting all values of the spectrum to zero, except the one you are interested in) acts as a brick-wall filter, and you will get considerable artefacts if you take the inverse transform. Refer to this topic or this page if you're interested.

bin2mat running slow need a faster solution

I am using bin2mat function from matlab file exchange, for some reason it runs very slow. Is it possible to make it run faster or is there an alternative? I am trying: zC = bin2mat(s.X,s.Y,s.Z,xC,yC); I am not sure where it gets bogged down. I need to do this on point cloud data to calculate volume and such.
Here is the code:
function ZG = bin2mat(x,y,z,XI,YI,varargin)
% BIN2MAT - create a matrix from scattered data without interpolation
%
% ZG = BIN2MAT(X,Y,Z,XI,YI) - creates a grid from the data
% in the (usually) nonuniformily-spaced vectors (x,y,z)
% using grid-cell averaging (no interpolation). The grid
% dimensions are specified by the uniformily spaced vectors
% XI and YI (as produced by meshgrid).
%
% ZG = BIN2MAT(...,#FUN) - evaluates the function FUN for each
% cell in the specified grid (rather than using the default
% function, mean). If the function FUN returns non-scalar output,
% the output ZG will be a cell array.
%
% ZG = BIN2MAT(...,#FUN,ARG1,ARG2,...) provides aditional
% arguments which are passed to the function FUN.
%
% EXAMPLE
%
% %generate some scattered data
% [x,y,z]=peaks(150);
% ind=(rand(size(x))>0.9);
% xs=x(ind); ys=y(ind); zs=z(ind);
%
% %create a grid, use lower resolution if
% %no gaps are desired
% xi=min(xs):0.25:max(xs);
% yi=min(ys):0.25:max(ys);
% [XI,YI]=meshgrid(xi,yi);
%
% %calculate the mean and standard deviation
% %for each grid-cell using bin2mat
% Zm=bin2mat(xs,ys,zs,XI,YI); %mean
% Zs=bin2mat(xs,ys,zs,XI,YI,#std); %std
%
% %plot the results
% figure
% subplot(1,3,1);
% scatter(xs,ys,10,zs,'filled')
% axis image
% title('Scatter Data')
%
% subplot(1,3,2);
% pcolor(XI,YI,Zm)
% shading flat
% axis image
% title('Grid-cell Average')
%
% subplot(1,3,3);
% pcolor(XI,YI,Zs)
% shading flat
% axis image
% title('Grid-cell Std. Dev.')
%
% SEE also RESHAPE ACCUMARRAY FEVAL
% A. Stevens 3/10/2009
% astevens#usgs.gov
%check inputs
error(nargchk(5,inf,nargin,'struct'));
%make sure the vectors are column vectors
x = x(:);
y = y(:);
z = z(:);
if all(any(diff(cellfun(#length,{x,y,z}))));
error('Inputs x, y, and z must be the same size');
end
%process optional input
fun=#mean;
test=1;
if ~isempty(varargin)
fun=varargin{1};
if ~isa(fun,'function_handle');
fun=str2func(fun);
end
%test the function for non-scalar output
test = feval(fun,rand(5,1),varargin{2:end});
end
%grid nodes
xi=XI(1,:);
yi=YI(:,1);
[m,n]=size(XI);
%limit values to those within the specified grid
xmin=min(xi);
xmax=max(xi);
ymin=min(yi);
ymax=max(yi);
gind =(x>=xmin & x<=xmax & ...
y>=ymin & y<=ymax);
%find the indices for each x and y in the grid
[junk,xind] = histc(x(gind),xi);
[junk,yind] = histc(y(gind),yi);
%break the data into a cell for each grid node
blc_ind=accumarray([yind xind],z(gind),[m n],#(x){x},{NaN});
%evaluate the data in each grid using FUN
if numel(test)>1
ZG=cellfun(#(x)(feval(fun,x,varargin{2:end})),blc_ind,'uni',0);
else
ZG=cellfun(#(x)(feval(fun,x,varargin{2:end})),blc_ind);
end
It is slower on these two steps for one run it took:
ZG=cellfun(#(x)(feval(fun,x,varargin{2:end})),blc_ind); took 33 secs
blc_ind=accumarray([yind xind],z(gind),[m n],#(x){x},{NaN}); took 10 secs
You can change blc_ind = ... to
ZG=accumarray([yind xind],z(gind),[m n],#mean,NaN);
and delete other codes form here so the is no need to if numel(test)>1....

How can I debug the following Matlab code?

The error
File: parameter_estimation_1.m Line: 8 Column: 10
Unexpected MATLAB expression.
crops up when I run the following MATLAB code:
T = 0:0.25:5; % time vector (row)
T = T'; % time vector (column)
seed = [3;0.5]; % seed for noise generation
randn('state',seed); % using the same seed each time
uu = 0.5 1 0.25*randn(length(T),1); % mean of 0.5 with variance
% of 0.25
U = 2*round(uu)-1; % creates PRBS with -1 and 1 values %
sim('est_vdv'); % runs simulation of linear van de vusse % diagram
figure(1); % plot input-output data
subplot(2,1,1),plot(tp,yp,'k',t,y,'ko');
xlabel('time, min'), ylabel('y')
title('PRBS estimation example')
subplot(2,1,2),plot(tp,up,'k'); xlabel('time, min'),ylabel('u')
axis([0 5 -1.1 1.1])
% % generate phi matrix for estimation
for j = 4:22;
phi(j-3,:) = [y(j-2) y(j-3) u(j-2) u(j-3)];
end
%
theta = inv(phi'*phi)*phi'*y(3:21) % estimate parameters
num = [theta(3) theta(4)]; % numerator of discrete transfer function
den = [1 -theta(1) -theta(2)]; % denominator of discrete transfer function
sysd = tf(num,den,0.25) % create discrete tf object
tzero(sysd) % calculate zeros
pole(sysd) % calculate poles
syszpk = zpk(sysd) % zero-pole-k form
This code is supposed to run in tandem with a SIMULINK model titled "est_vdv" to estimate the parameters of a model.
How should I deal with this error?
Thanks Friends for your suggestions, I have been able to figure out what went wrong with the 5th line, it should have been
uu=0.5+0.25.*randn(length(T),1)
Sorry, it was wrongly indicated that the error was in the 8th line.

error in using fftoneside

Hi I'm trying to calculate mfcc for which i'm windowing. I have seen this one post I'm getting error in fftOneSide.
my code is
waveFile='test_preEmphasis.wav';
[y, fs]=wavread(waveFile);
n=512;
t=(1:n)'/fs;
startIndex=30418;
endIndex=startIndex+n-1;
original=y(startIndex:endIndex);
windowed=original.*hamming(n);
[mag1, phase1, freq1]=fftOneSide(original, fs);
[mag2, phase2, freq2]=fftOneSide(windowed, fs);
subplot(3,2,1); plot(original); grid on; axis([-inf inf -1 1]);
title('Original signal');
subplot(3,2,2); plot(windowed); grid on; axis([-inf inf -1 1]);
title('Windowedsignal');
subplot(3,2,3); plot(freq1, mag1); grid on;
title('Energy spectrum (linear scale)');
subplot(3,2,4); plot(freq2, mag2); grid on;
title('Energy spectrum (linear scale)');
subplot(3,2,5); plot(freq1, 20*log(mag1)); grid on;
axis([-inf inf -80 120]); title('Energy spectrum (db)');
subplot(3,2,6); plot(freq2, 20*log(mag2)); grid on; axis([-inf inf -80 120]);
title('Energy spectrum (db)');
the error i'm getting is
??? Undefined function or method 'fftOneSide' for input arguments of type 'double'.
any help is appreciated
thanks
This is a really old post, it'd be neat if someone still cared. I just provided what I believe to be the answer in the recent post below, which I arrived at after a fair bit of frustration: Undefined function 'fftOneSide' for input arguments of type 'double'.
It should be noted here there's a call to a file, which I'm not sure if the author had originally or not. I suspect all the problems are related to a similarly named file in the sourcecode.
If you look at my discussion in the other post, within the function definition there is a call to a method demo with a file - which isn't present if you just have the function definition, not the original file. Calling [mag1, phase1, freq1]=fftOneSide(original, fs,1), after you comment out the first line if nargin <1... and the demo routine worked fine on my machine with the code which I'll show below. Having the third argument equal to 1 guarantees that the code will run the print routines, which is important.
In case the other thread is closed, I just want to show the output, when the input is manually defined, and I call [mag1, phase1, freq1]=fftOneSide(original, fs,1) on the properly edited method, with the inputs as in the original post shown below (notice the call is to original in fftOneSide..in the other post it was like this as well.. I believe the call was was meant to be instead for windowed, but I don't have the signals toolbox with hamming anyways):
fs=8000;
t=(1:512)'/fs; %'// <-- prevents string markdown
f=306.396;
original=sin(2*pi*f*t)+0.2*randn(length(t),1);
% windowed=original.*hamming(length(t)); % defined in other post
[mag1,phase1,freq1]=fftOneSide(original,fs); % I call fftOneSide(original,fs,1);
The output is as follows (source code below!)
Anyways, here's the source code in case anyone wants to use this function
function [magSpec, phaseSpec, freq, powerSpecInDb]=fftOneSide(signal, fs, plotOpt)
% fftOneSide: One-sided FFT for real signals
% Usage: [magSpec, phaseSpec, freq, powerSpecInDb]=fftOneSide(signal, fs)
%
% For example:
% [y, fs]=wavread('welcome.wav');
% frameSize=512;
% startIndex=2047;
% signal=y(startIndex:startIndex+frameSize+1);
% signal=signal.*hamming(length(signal));
% plotOpt=1;
% [magSpec, phaseSpec, freq, powerSpecInDb]=fftOneSide(signal, fs, plotOpt);
% Roger Jang, 20060411, 20070506
if nargin<1, selfdemo; return; end %=== (MathBio: Comment this out!)
if nargin<2, fs=1; end
if nargin<3, plotOpt=0; end
N = length(signal); % Signal length
freqStep = fs/N; % Frequency resolution
time = (0:N-1)/fs; % Time vector
z = fft(signal); % Spectrum
freq = freqStep*(0:N/2); % Frequency vector
z = z(1:length(freq)); % One side
z(2:end-1)=2*z(2:end-1); % Assuming N is even, symmetric data is multiplied by 2
magSpec=abs(z); % Magnitude spectrum
phaseSpec=unwrap(angle(z)); % Phase spectrum
powerSpecInDb=20*log(magSpec+realmin); % Power in db
if plotOpt
% ====== Plot time-domain signals
subplot(3,1,1);
plot(time, signal, '.-');
title(sprintf('Input signals (fs=%d)', fs));
xlabel('Time (seconds)'); ylabel('Amplitude'); axis tight
% ====== Plot spectral power
subplot(3,1,2);
plot(freq, powerSpecInDb, '.-'); grid on
title('Power spectrum');
xlabel('Frequency (Hz)'); ylabel('Power (db)'); axis tight
% ====== Plot phase
subplot(3,1,3);
plot(freq, phaseSpec, '.-'); grid on
title('Phase');
xlabel('Frequency (Hz)'); ylabel('Phase (Radian)'); axis tight
end
% ====== Self demo (MathBio: Comment all of this out! )
function selfdemo
[y, fs]=wavread('welcome.wav');
frameSize=512;
startIndex=2047;
signal=y(startIndex:startIndex+frameSize+1);
signal=signal.*hamming(length(signal));
[magSpec, phaseSpec, freq, powerSpecInDb]=feval(mfilename, signal, fs, 1);