The question is about feature detection concept.
I'm stuck after I finding the corner of image and I want to know how to finding the feature point within the computed corners.
Suppose I have grayscale image that have data like this
A = [ 1 1 1 1 1 1 1 1;
1 3 3 3 1 1 4 1;
1 3 5 3 1 4 4 4;
1 3 3 3 1 4 4 4;
1 1 1 1 1 4 6 4;
1 1 1 1 1 4 4 4]
if I use
B = imregionalmax(A);
the result would be like this
B = [ 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 0;
0 1 1 1 0 1 1 1;
0 1 1 1 0 1 1 1;
0 0 0 0 0 1 1 1;
0 0 0 0 0 1 1 1]
The question is how do I pick the highest peak inside max local region (in sample how did I chose 5 from 3 and 6 from 4)?
My idea was using B to detect each region and use imregionalmax() again but I'm not good at coding and I need some advice or other ideas.
There are a couple of other easy ways to implement a 2D peak finder: ordfilt2 or imdilate.
ordfilt2
The most direct method is to use ordfilt2, which sorts values in local neighborhoods and picks the n-th value. (The MathWorks example demonstrates how to implemented a max filter.) You can also implement a 3x3 peak finder with ordfilt2 by, (1) using a 3x3 domain that does not include the center pixel, (2) selecting the largest (8th) value and (3) comparing to the center value:
>> mask = ones(3); mask(5) = 0 % 3x3 max
mask =
1 1 1
1 0 1
1 1 1
There are 8 values considered in this mask, so the 8-th value is the max. The filter output:
>> B = ordfilt2(A,8,mask)
B =
3 3 3 3 3 4 4 4
3 5 5 5 4 4 4 4
3 5 3 5 4 4 4 4
3 5 5 5 4 6 6 6
3 3 3 3 4 6 4 6
1 1 1 1 4 6 6 6
The trick is compare this to A, the center value of each neighborhood:
>> peaks = A > B
peaks =
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
imdilate
Image dilation is usually done on binary images, but grayscale image dilation is simply a max filter (see Definitions section of imdilate docs). The same trick used with ordfilt2 applies here: define a neighborhood that does not include the center neighborhood pixel, apply the filter and compare to the unfiltered image:
B = imdilate(A, mask);
peaks = A > B;
NOTE: These methods only find a single pixel peak. If any neighbors have the same value, it will not be a peak.
The function imregionalmax gives you the 8-connected region containing the maximum and its 8 neighbours (i.e. the 3x3-regions you are seeing). You could then use morphological operations with the same 3x3 structural element to thin out those regions to their centers. E.g.
B = imregionalmax(A);
C = imerode(B, ones(3));
or equivalently
B = imregionalmax(A);
D = bwmorph(B, 'erode');
Alternatively you could write your own maximum finding function using block-processing:
fun = #(block) % your code working on 'block' goes here ...
B = blockproc(A, ones(3), fun)
But most likely this will be slower than the built-in functions.
(I don't have the toolbox available right now, so I can't try that out.)
Also have a look here and here.
Related
I need to transform a neural network output matrix with size 2 X N in zeros and ones, where 0 will represent the minimum value of the column and 1 contrariwise. This will be necessary in order to calculate the confusion matrix.
For example, consider this matrix 2 X 8:
2 33 4 5 6 7 8 9
1 44 5 4 7 5 2 1
I need to get this result:
1 0 0 1 0 1 1 1
0 1 1 0 1 0 0 0
How can I do this in MATLAB without for loops? Thanks in advance.
>> d = [ 2 33 4 5 6 7 8 9;
1 44 5 4 7 5 2 1];
>> bsxfun(#rdivide, bsxfun(#minus, d, min(d)), max(d) - min(d))
ans =
1 0 0 1 0 1 1 1
0 1 1 0 1 0 0 0
The bsxfun function is necessary to broadcast the minus and division operations to matrices of different dimensions (min and max have only 1 row each).
Other solution is the following (works only for 2 rows):
>> [d(1,:) > d(2,:); d(1,:) < d(2,:)]
ans =
1 0 0 1 0 1 1 1
0 1 1 0 1 0 0 0
If it's just 2xN, then this will work:
floor(A./[max(A); max(A)])
In general:
floor(A./repmat(max(A),size(A,1),1))
Using MATLAB, I have a matrix such as:
1 1 0
1 0 1
1 1 1
The aim is to represent the zero's as a mine in a minesweeper program and the values around the 0's should reflect how many mines are adjacent to it.
Therefore creating a vector like this:
1 2 0
1 0 2
1 1 1
I have thought to take elements around the zero as a sub matrix and then add 1, but then it will turn 0's into 1's.
How would I program such a task?
I think this can be achieved by simple convolution plus some post-processing on the resultant matrix as follows:
% Defining a 6x6 matrix of zeros and ones
mineMat=randi(2,6,6)-1;
numberOfMines=conv2(double(~mineMat),ones(3,3),'same').*mineMat;
% Result:
mineMat=
1 0 1 1 0 0
0 0 0 1 0 0
1 1 1 1 1 0
1 1 1 1 0 1
0 1 0 0 0 0
0 1 1 0 0 0
numberOfMines=
3 0 3 3 0 0
0 0 0 3 0 0
2 3 2 3 4 0
1 2 2 4 0 4
0 3 0 0 0 0
0 3 3 0 0 0
Parag's answer would be my first option. Another approach is to use blockproc (Image Processing Toolbox):
blockproc(~M, [1 1], #(x)sum(x.data(:)), 'Bordersize', [1 1], 'TrimBorder', 0).*M
Sounds like you are looking to apply a (two dimensional) filter:
M = [1 1 0; 1 0 1; 1 1 1]==0;
F = filter2(ones(3),M);
F(M)=0
The middle line basically does the work (applying the filter) to create the count. The last line ensures that the mines stay at value 0.
Say I have the following two matrices:
>> x = [1 4 3; 6 4 3; 6 9 3; 2 4 3; 5 4 0; 5 3 1; 6 4 7];
>> y = [0 0 1; 1 1 0; 1 1 0; 0 1 1; 0.2 0.8 0.54; 1 1 1; 0 0 0];
Where you can think of x as some image, and y as the degree of membership of each element of x to some region of interest.
Say I set those elements in x that have degree of membership = 1 to 1 (core) and the other elements to 0 as follows:
x = zeros(size(y));
x(y==1) = 1;
In which case I will have the following output:
0 0 1
1 1 0
1 1 0
0 1 1
0 0 0
1 1 1
0 0 0
Now, for the elements of 0, I substitute their values with the value of y in the corresponding location as follows:
x(x==0)=y(x==0);
Now, I select those pixels that are considered 4-neighbours of core but not in core as follows:
four_neighbourhood_pixels = imdilate(core, strel('diamond', 1)) - core;
My question is: how can we select a pixel p that belongs to four_neighbourhood_pixels that minimizes the distance between x & core?
Provided that for distance I calculate it as follows:
pdist([x,core],'minkowski');
Provided that x in the preceding command will be the matrix after substituting the zeros with the degree of membership values y i the corresponding location?
So, how can I select that pixel that belongs to four_neighbourhood_pixels that minimizes the distance between x with the zeros substituted and core?
Thanks.
If I understand correctly, core is the following matrix:
0 0 1
1 1 0
1 1 0
0 1 1
0 0 0
1 1 1
0 0 0
First find the distance between x and core.
dist=pdist([x,core],'minkowski');
dist1=squareform(dist);
[row1,row2]=find(dist1==min(dist1(:)); %interpretation: you get the minimum distance between row1 and row2 of [x core]
Veify if my understanding is correct:
You want a pixel from x which minimizes the distance dist and it should belong to four_neighbourhood_pixels. This is the matrix [x core]
1 4 3 0 0 1
6 4 3 1 1 0
6 9 3 1 1 0
2 4 3 0 1 1
5 4 0 0 0 0
5 3 1 1 1 1
6 4 7 0 0 0
Suppose you get the minimum value between 2nd row and 3rd row. Now based on this tell us what you mean by "find a pixel which minimizes..."
I want to create a matrix like
A = [0 0 0 0 1;
0 0 0 1 1;
0 0 0 1 1;
0 0 0 1 1;
0 0 1 1 1;
0 1 1 1 1]
based on a vector indicating how many '0's should precede '1's on each row:
B = [4 3 3 3 2 1]
Is there a loopless way to do this ?
You don't mention in your question how the horizontal size of the array should be defined (the number of ones).
For predefined width you can use this code:
width = 5;
A = cell2mat(arrayfun(#(x) [ zeros(1,x), ones(1,width-x) ], B, 'UniformOutput', false)');
If you want that A has minimal width, but still at least one 1 in every row:
A = cell2mat(arrayfun(#(x) [ zeros(1,x), ones(1,max(B)+1-x) ], B, 'UniformOutput', false)');
A shorter “old-school” way to achieve this without a loop would be as follows:
A = repmat(B',1,max(B)+1)<repmat([1:max(B)+1],size(B,2),1)
If you want to have a minimum number of ones
min_ones=1; %or whatever
A = repmat(B',1,max(B)+min_ones)<repmat([1:max(B)+min_ones],size(B,2),1)
I don’t know how this compares speedwise to #nrz’s approach (I’ve only got Octave to hand right now), but to me it's more intuitive as it’s simply comparing a max(B) + min_ones * column tiling of B:
4 4 4 4 4
3 3 3 3 3
3 3 3 3 3
3 3 3 3 3
2 2 2 2 2
1 1 1 1 1
with a row tiling of [1 : max(B) + min_ones]
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
To generate:
A =
0 0 0 0 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1
This requires only one line, and seems to be faster than previous solutions based on repmat or arrayfun:
%// Example data
ncols = 5;
B = [4 3 3 3 2 1];
%// Generate A
A = bsxfun(#gt, 1:ncols, B(:));
I have a matrix like the following (arbitrary cols/rows):
1 0 0 0 0
1 2 0 0 0
1 2 3 0 0
1 2 3 4 0
1 2 3 4 5
1 2 5 0 0
1 2 5 3 0
1 2 5 3 4
1 4 0 0 0
1 4 2 0 0
1 4 2 3 0
1 4 2 5 0
1 4 2 5 3
1 4 5 0 0
1 4 5 3 0
2 0 0 0 0
2 3 0 0 0
2 3 4 0 0
2 3 4 5 0
2 5 0 0 0
2 5 3 0 0
2 5 3 4 0
3 0 0 0 0
3 4 0 0 0
3 4 2 0 0
3 4 2 5 0
3 4 5 0 0
and now I want to get all rows where the first element is a certain value X and the last element (that is the last element != 0) is a certain value Y, OR turned around: the first is Y and the last is X.
Can't see any speedful code which does NOT use a for-loop :(
Thanks!
EDIT: To filter all rows with a certain first element is really easy, you don't need to help me here. So let's assume I only want to do the following: Filter all rows where the last element (i.e. the last element != 0 in each row) is either X or Y.
EDIT
Thanks a lot for your posts. I benchmarked the three possible solutions with a matrix of 473408*10 elements. Here's the benchmarkscript:
http://pastebin.com/9hEAWw9a
The results were:
t1 = 2.9425 Jonas
t2 = 0.0999 Brendan
t3 = 0.0951 Oli
So thanks a lot you guys, I'm sticking with Oli's solution and thus accept it. Thanks though for all the other solutions!
All you need to do is to find the linear indices of the last non-zero element of every row. The rest is easy:
[nRows,nCols] = size(A);
[u,v] = find(A); %# find all non-zero elements in A
%# for each row, find the highest column index with accumarray
%# and convert to linear index with sub2ind
lastIdx = sub2ind([nRows,nCols],(1:nRows)',accumarray(u,v,[nRows,1],#max,NaN));
To filter rows, you can then write
goodRows = A(:,1) == X & A(lastIdx) == Y
Here is a trick: Look for numbers with a 0 on the right, and sum them all:
H=[1 2 0 0 0;
2 3 1 0 0;
4 5 8 0 0;
8 5 4 2 2];
lastNumber=sum(H.*[H(:,2:end)==0 true(size(H,1),1)],2)
ans =
2
1
8
2
The rest is easy:
firstNumber=H(:,1);
find( (firstNumber==f) & (lastNumber==l) )
This works only if the numbers in each row are x number of non-zeros followed by a series of zeros. i.e. it will not work if the following is possible 1 0 3 4 0 0, I assume that isn't possible based on the sample input you gave ...
% 'a' is your array
[nx, ny] = size(a);
inds = [0:ny:ny*(nx-1)]' + sum(a ~= 0, 2);
% Needs to transpose so that the indexing reads left-to-right
aT = a';
valid1 = aT(inds) == Y;
valid2 = a(:,1) == X;
valid = valid1 & valid2;
valid_rows = a(valid,:);
This is messy I know ...