Complete matrix with vectors as indices in matlab - matlab

Let us say that we have a matrix A1 and two vectors v1 and v2 as follow:
A1=zeros(5, 5);
v1=[1 2 3];
v2=[5 5 4];
Is there a way to replace the elements of A1 using v1 and v2 as indices one by one? i.e., insert in A1(1, 5), A1(2, 5), and in A1(3, 4) some elements.
The following do all combinations of v1 and v2. I want only one by one. i.e., v1(1) with v2(1), v1(2) with v2(2), and so on.
A1(v1, v2)

Basically you have row and column information and need to convert them into a linear index, to index into A1. For this, use sub2ind -
A1(sub2ind(size(A1),v1(1),v2(1))) = 12
A1(sub2ind(size(A1),v1(2),v2(2))) = 10
A1(sub2ind(size(A1),v1(3),v2(3))) = 9
Output -
A1 =
0 0 0 0 12
0 0 0 0 10
0 0 0 9 0
0 0 0 0 0
0 0 0 0 0
If you have those values stored in some array, array1, use this for the same result as above -
array1 = [12 10 9];
A1(sub2ind(size(A1),v1,v2)) = array1;

Convert your vectors into linear indices:
A1=zeros(5, 5);
v1=[1 2 3];
v2=[5 5 4];
ind=sub2ind(size(A1), v1, v2);
A1(ind(1))=1
A1 =
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
etc.

Related

insert a row and a line in a matrix

I create a matrix b from a matrix a in the following way:
a=[1 2 ; 3 4];
b= [a zeros(2); zeros(2) a]
b =
1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4
Successively, I want to insert a line and a column of zeros at a certain point of the matrix. Let's say at middle way:
idx=2;
c=[b(1:idx,:); zeros(1,4); b(idx+1:end,:)]
c =
1 2 0 0
3 4 0 0
0 0 0 0
0 0 1 2
0 0 3 4
c=[c(:,1:idx) zeros(5,1) c(:,idx+1:end)]
c =
1 2 0 0 0
3 4 0 0 0
0 0 0 0 0
0 0 0 1 2
0 0 0 3 4
Is there a more intelligent way of doing this?
Here is another way(I don't know if it is a more intelligent way).
Assuming that you have the row index as row and the column index as col:
sc = size(b) + 1;
c = zeros(sc);
ROW = true(sc(1), 1);
ROW(row) = false;
COL = true(1, sc(2));
COL(col) = false;
Then in MATLAB r2016b /Octave you can write
c(ROW & COL)=b;
In pre 2016b you can use bsxfun
c(bsxfun(#and, ROW , COL))=b;

How to sort the columns of a matrix in order of some other vector in MATLAB?

Say I have a vector A of item IDs:
A=[50936
332680
107430
167940
185820
99732
198490
201250
27626
69375];
And I have a matrix B whose rows contains values of 8 parameters for each of the items in vector A:
B=[0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 1 1
1 0 1 0 0 1 0 1 1 1
0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1];
So, column 1 in matrix B represents data of item in row 1 of vector A, column 2 in matrix B represents data of item in row 2 of vector A, and so on. However, I want matrix B to contain the information in a different order of items stored in vector A2:
A2=[185820
198490
69375
167940
99732
332680
27626
107430
50936
201250];
How do I sort them, so that column 1 of matrix B contains data for item in row 1 of vector A2, column 2 of matrix B contains data for item in row 2 of vector A2, and so on?
My extremely crude solution to do this is the following:
A=A'; A2=A2';
for i=1:size(A,2)
A(2:size(B,1)+1,i)=B(:,i);
end
A2(2:size(B,1)+1,:)=zeros(size(B,1),size(B,2));
for i=size(A2,2)
for j=size(A,2)
if A2(1,i)==A(1,j)
A2(2:end,i)=A(2:end,j);
end
end
end
B2 = A2(2:end,:);
But I would like to know a cleaner, more elegant and less time consuming method to do this.
A possible solution
You can use second output of ismember function.
[~ ,idx] = ismember(A2,A);
B2 = B(:,idx);
Update:I tested both my solution and another proposed by hbaderts
disp('-----ISMEMBER:-------')
tic
[~,idx]=ismember(A2,A);
toc
disp('-----SORT:-----------')
tic
[~,idx1] = sort(A);
[~,idx2] = sort(A2);
map = zeros(1,size(idx2));
map(idx2) = idx1;
toc
Here is the result in Octave:
-----ISMEMBER:-------
Elapsed time is 0.00157714 seconds.
-----SORT:-----------
Elapsed time is 4.41074e-05 seconds.
Conclusion: the sort method is more efficient!
As both A and A2 contain the exact same elements, just sorted differently, we can create a mapping from the A-sorting to the A2-sorting. For that, we run the sort function on both and save indexes (which are the second output).
[~,idx1] = sort(A);
[~,idx2] = sort(A2);
Now, the first element in idx1 corresponds to the first element in idx2, so A(idx1(1)) is the same as A2(idx2(1)) (which is 27626). To create a mapping idx1 -> idx2, we use matrix indexing as follows
map = zeros(size(idx2));
map(idx2) = idx1;
To sort B accordingly, all we need to do is
B2 = B(:, map);
[A2, sort_order] = sort(A);
B2 = B(:, sort_order)
MATLAB's sort function returns the order in which the items in A are sorted. You can use this to order the columns in B.
Transpose B so you can concatenate it with A:
C = [A B']
Now you have
C = [ 50936 0 0 1 1 0 0 0 0;
332680 0 0 0 0 0 0 0 0;
107430 0 0 1 1 1 0 0 0;
167940 0 0 0 0 0 0 0 0;
185820 0 0 0 0 0 0 0 0;
99732 0 0 1 1 0 0 0 0;
198490 0 0 0 0 0 0 0 0;
201250 0 0 1 1 1 1 0 0;
27626 0 0 1 1 0 0 0 0;
69375 0 0 1 1 1 0 0 1];
You can now sort the rows of the matrix however you want. For example, to sort by ID in ascending order, use sortrows:
C = sortrows(C)
To just swap rows around, use a permutation of 1:length(A):
C = C(perm, :)
where perm could be something like [4 5 6 3 2 1 8 7 9 10].
This way, your information is all contained in one structure and the data is always correctly matched to the proper ID.

Loopless submatrix assignment in Matlab

I have a matrix F of size D-by-N and a vector A of length N of random integers in the range [1,a]. I want to create a matrix M of size D * a such that each colum M(:,i) has the vector F(:,i) starting from the index (A(i)-1)*D+1 to (A(i)-1)*D+D.
Example:
F = [1 2 3 10
4 5 6 22]
A = [3 2 1 2]
a = 4
M = [0 0 3 0
0 0 6 0
0 2 0 10
0 5 0 22
1 0 0 0
4 0 0 0
0 0 0 0
0 0 0 0]
I can do it with a simple loop
for i = 1 : N
M((A(i)-1)*D+1:(A(i)-1)*D+D,i) = F(:,i);
end
but for large N this might take a while. I am looking for a way to do it without loop.
You can use bsxfun for a linear-indexing based approach -
[D,N] = size(F); %// Get size of F
start_idx = (A-1)*D+1 + [0:N-1]*D*a; %// column start linear indices
all_idx = bsxfun(#plus,start_idx,[0:D-1]'); %//'# all linear indices
out = zeros(D*a,N); %// Initialize output array with zeros
out(all_idx) = F; %// Insert values from F into output array
Sample run -
F =
1 2 3 10
4 5 6 22
A =
3 2 1 2
a =
4
out =
0 0 3 0
0 0 6 0
0 2 0 10
0 5 0 22
1 0 0 0
4 0 0 0
0 0 0 0
0 0 0 0

In matlab, increment different column element for every row in without using a loop

Assume you have an 4x4 matrix A of zeros:
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
And an 4x1 vector B that represents column indices for matrix A (so values [1:4])
4
2
3
1
Now I want to increment those columnpositions in matrix A on the index on every row from vector B.
I have tried a couple of constructions myself but can't quite manage to do this.
For example I tried:
A(:, B) = A(:, B)+1
Which just increment every element in A.
This is how I want the operation to act:
>> A(somethting(B)) = A(somethting(B)) + 1
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0
You can do this by using the linear index to each of the elements you want to address. Compute this using sub2ind:
>> A = zeros(4)
A =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
>> B = [4 2 3 1]
B =
4 2 3 1
>> i=sub2ind(size(A),B,1:4)
i =
4 6 11 13
>> A(i) = A(i)+1
A =
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0
Well just in case you want a looped version :p
A = zeros(4,4);
B = [4, 2, 3, 1];
for i = 1:length(B)
A(i, B(i) ) = A(i, B(i) ) + 1;
end
A = zeros(4);
B = [4 2 3 1];
A(repmat([1:4]',1,4) == repmat(B,4,1)) = 1
A =
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

Matlab: How to insert zeros in specific places of vector

Can someone help me with the following problem in Matlab? I have a first vector containing the elements values. For example,
[2 8 4 9 3].
And a second one with the desired places in a second vector. For example,
[0 0 1 0 0 0 0 1 1 0 0 1 0 0 1].
Now I want to put the values from the first vector on the positions of the second one to end up with
[0 0 2 0 0 0 0 8 4 0 0 9 0 0 3].
What is the most efficient way of doing this when the size of the vector can be very large. (then thousands of elements)?
You can consider the y values as logical indicators, then use logical indexing to set those values to the values in x.
x = [2 8 4 9 3];
y = [0 0 1 0 0 0 0 1 1 0 0 1 0 0 1];
y(logical(y)) = x;
Alternatively, you could use
y(y==1) = x;
Use self-indexing:
% Your values:
V = [2 8 4 9 3];
% The desired locations of these values:
inds = [0 0 1 0 0 0 0 1 1 0 0 1 0 0 1];
% index the indices and assign
inds(inds>0) = V