In the shown image, I need to find the center points of the white blobs or I need to segment each white blob (to get an image which only contains that blob) from the background.
What is the efficient way to do it?
Seems this is what exactly you are looking for: Image Segmentation Tutorial ("BlobsDemo").
It contains demo to illustrate simple blob detection, measurement, and filtering. First it finds all the objects, then filters results to pick out objects of certain sizes. The basic concepts of thresholding, labeling, and regionprops are demonstrated with examples.
You need to use watershed algoritm for segmentation.
http://www.mathworks.com/help/images/ref/watershed.html
After segment cells use regionprops function.
Related
Could you please advice what image processing transform can I use in order to correct character blurring after text scanning? Afterwards, i am planning to remove uneven background illumination using top-hat transforms.
You need spatially dependent deconvolution. I think, the point scattering function (PSF) here is ellipse (in left part of image).
I need to implement an image segmentation function in MATLAB based on the principles of the connected components algorithm, but with a few modifications. This is intended for very simple, 2D images, with a background color and some objects in different colors.
The idea is that, taking the image as a matrix, I provide a tool to select the background color (it will vary for every image). Then, when the value of the color of the background of the image is selected, I have to segment all the objects in the image, and the result should be a labeled matrix, of the same size of the image, with 0's for the background, and a different number for each object.
This is a graphic example of what I mean:
I understand the idea of how to do it, but I do not know how to implement it on MATLAB. For each pixel (matrix position) I should mark it as visited and then if the value corresponds to the one of the background, assign 0, if not, assign another value. The objects can be formed by different colors, so in the end, I need to segment groups of adjacent pixels, whatever their color is. Also I have to use 8-connectivity, in order to count the green object of the example image as only one object and not 4 different ones. And also, the objects should be counted from top to bottom, and from left to right.
Is there a simple way of doing this in MATLAB? I know the bwlabel function, but it works for binary images only, so I'd like to adapt it to my case.
once you know the background color, you can easily convert your image into a binary mask of the same size:
bw=img!=bg_color;
Once you have a binary mask you can call bwlavel with 8-connectivity argument as you suggested yourself.
Note: you might want to convert your color image from RGB representation to an indexed image using rgb2ind before processing.
I have scanned copies of currency notes from which I need to extract only the rectangular notes.
Although the scanned copies have a very blank background, the note itself can be rotated or aligned correctly. I'm using matlab.
Example input:
Example output:
I have tried using thresholding and canny/sobel edge detection to no avail.
I also tried the solution given here but it detects the entire image for cropping and it would not work for rotated images.
PS: My primary objective is to determine the denomination of the currency. There are a couple of methods I thought I could use:
Color based, since all currency notes have varying primary colors.
The advantage of this method is that it's independent of the
rotation or scale of the input image.
Detect the small black triangle on the lower left corner of the note. This shape is unique
for each denomination.
Calculating the difference between 2 images. Since this is a small project, all input images will be of the same dpi and resolution and hence, once aligned, the difference between the input and the true images can give a rough estimate.
Which method do you think is the most viable?
It seems you are further advanced than you looked (seeing you comments) which is good! Im going to show you more or less the way you can go to solve you problem, however im not posting the whole code, just the important parts.
You have an image quite cropped and segmented. First you need to ensure that your image is without holes. So fill them!
Iinv=I==0; % you want 1 in money, 0 in not-money;
Ifill=imfill(Iinv,8,'holes'); % Fill holes
After that, you want to get only the boundary of the image:
Iedge=edge(Ifill);
And in the end you want to get the corners of that square:
C=corner(Iedge);
Now that you have 4 corners, you should be able to know the angle of this rotated "square". Once you get it do:
Irotate=imrotate(Icroped,angle);
Once here you may want to crop it again to end up just with the money! (aaah money always as an objective!)
Hope this helps!
I'd like to resize the components contained in a 3D binary image sequence without changing any of the dimensions of the sequence itself.
I'm not sure if I need to do it on a component-by-component basis, if yes, then how do I create a transform such that the resized components are re-positioned 'correctly' in the image sequence? By 'correctly', I mean with the same centre of mass as the original unprocessed components.
(If that last paragraph doesn't make sense then please ignore)
A 2D example: suppose I wanted to enlarge by 10% the white blobs in the following [295x445] image
How would you do this without making the image itself larger?
you could use the imdilate function to dilate the regions of interest. The examples in the webpage show how to use this function.
I would like to check whether an image has a lot of homogeneous areas. Therefore I would like to get some kind of value of an image that declares a ratio for images depending on the amount/size of homogeneous areas (e.g. that value could have a range from 0 to 5).
Instead of a value there could be some kind of classification as well.
[many homogeneous areas -> value/class 5 ; few homogeneous areas -> value/class 0]
I would like to do that in perl. Is there a package/function or something like that?
What you want seems to be an area of image processing research which I am not familiar with. However, GraphicsMagick's mogrify utility has a -segment option:
Use -segment to segment an image by analyzing the histograms of the color components and identifying units that are homogeneous with the fuzzy c-means technique. The scale-space filter analyzes the histograms of the three color components of the image and identifies a set of classes. The extents of each class is used to coarsely segment the image with thresholding. The color associated with each class is determined by the mean color of all pixels within the extents of a particular class. Finally, any unclassified pixels are assigned to the closest class with the fuzzy c-means technique.
I don't know if this is any use to you. You might have to hit the library on this one, and read some research. You do have access to this through PerlMagick as well. However, it does not look like it gives access to the internals, but just produces an image based on parameters.
In my tests (without really understanding what the parameters do), photos turned entirely black, whereas PNG images with large areas of similar colors were reduced to a sort of an average color. Whether you can use that fact to develop a measure is an open question I am not going to investigate ;-)