How to speed up sparse matrix index operation in Matlab? - matlab

I need to create spare matrices with variable elements. Unfortunately, sparse matrix index operations are very slow.
Is there any way to speed up the process? Maybe there are some tricks that I don't know of?
Here is a minimal working example:
N = 400;
A = eye(7)+ [ zeros(3,3) eye(3) zeros(3,1) ;
zeros(3,3) zeros(3,3) zeros(3,1) ;
zeros(1,3) zeros(1,3) zeros(1,1) ] ;
B = [ zeros(3,3) zeros(3,1) ;
eye(3) zeros(3,1) ;
zeros(1,3) -2 ] ;
Su = sparse(7*N, 4*N);
for i=1:N
for j=0:i-1
Su(((i)*7 + 1) : ((i+1) * 7), (j*4 + 1) : ...
((j+1) * 4)) = A^(i-j-1) * B;
end
end
Sx = sparse(N*7, N*7);
for i=0:N
Sx((1 + i*7 : (i+1)*7), (1 + i*7 : (i+1)*7)) = A^i;
end
Su and Sx are matrices that are partitioned by (products of) A and B.

MATLABs code analyzer already mentions that this method of assigning sparse matrices is very slow as the nonzero pattern is changed which incurs significant overhead. Forgoing the sparse matrices and just using Su = zeros(.. instead makes the function execute in a reasonable time, even if you convert the matrices to sparse matrices afterwards.
If the memory used is of any concern, you could consider defining the zeros matrix as a different type, e.g. int16, as all values appear to be signed integers smaller than 400.
Otherwise, if you can predict the nonzero pattern in you're sparse matrix you can define it correctly upfront and won't suffer performance problems. You don't need to know the exact values, just whether a value is nonzero or not. Taking the following from MATLAB's Code Analyzer:
Explanation
Code Analyzer detects an indexing pattern for a sparse array that is likely to be slow. An assignment that changes the nonzero pattern of a sparse array can cause this error because such assignments result in considerable overhead.
Suggested Action
If possible, build sparse arrays using sparse as follows, and do not use indexed assignments (such as C(4) = B) to build them:
Create separate index and value arrays.
Call sparse to assemble the index and value arrays.
If you must use indexed assignments to build sparse arrays, you can optimize performance by first preallocating the sparse array with spalloc.
If the code changes only array elements that are already nonzero, then the overhead is reasonable. Suppress this message as described in Adjust Code Analyzer Message Indicators and Messages.
For more information, see “Constructing Sparse Matrices”.
So, if you can create an array of indices that will contain nonzero values, you can call sparse(i,j,s[,m,n,nzmax]) to predefine the nonzero pattern. If you only know the number of nonzero values, but not their pattern, using spalloc should also improve your performance.

Related

How to perform operations along a certain dimension of an array?

I have a 3D array containing five 3-by-4 slices, defined as follows:
rng(3372061);
M = randi(100,3,4,5);
I'd like to collect some statistics about the array:
The maximum value in every column.
The mean value in every row.
The standard deviation within each slice.
This is quite straightforward using loops,
sz = size(M);
colMax = zeros(1,4,5);
rowMean = zeros(3,1,5);
sliceSTD = zeros(1,1,5);
for indS = 1:sz(3)
sl = M(:,:,indS);
sliceSTD(indS) = std(sl(1:sz(1)*sz(2)));
for indC = 1:sz(1)
rowMean(indC,1,indS) = mean(sl(indC,:));
end
for indR = 1:sz(2)
colMax(1,indR,indS) = max(sl(:,indR));
end
end
But I'm not sure that this is the best way to approach the problem.
A common pattern I noticed in the documentation of max, mean and std is that they allow to specify an additional dim input. For instance, in max:
M = max(A,[],dim) returns the largest elements along dimension dim. For example, if A is a matrix, then max(A,[],2) is a column vector containing the maximum value of each row.
How can I use this syntax to simplify my code?
Many functions in MATLAB allow the specification of a "dimension to operate over" when it matters for the result of the computation (several common examples are: min, max, sum, prod, mean, std, size, median, prctile, bounds) - which is especially important for multidimensional inputs. When the dim input is not specified, MATLAB has a way of choosing the dimension on its own, as explained in the documentation; for example in max:
If A is a vector, then max(A) returns the maximum of A.
If A is a matrix, then max(A) is a row vector containing the maximum value of each column.
If A is a multidimensional array, then max(A) operates along the first array dimension whose size does not equal 1, treating the elements as vectors. The size of this dimension becomes 1 while the sizes of all other dimensions remain the same. If A is an empty array whose first dimension has zero length, then max(A) returns an empty array with the same size as A.
Then, using the ...,dim) syntax we can rewrite the code as follows:
rng(3372061);
M = randi(100,3,4,5);
colMax = max(M,[],1);
rowMean = mean(M,2);
sliceSTD = std(reshape(M,1,[],5),0,2); % we use `reshape` to turn each slice into a vector
This has several advantages:
The code is easier to understand.
The code is potentially more robust, being able to handle inputs beyond those it was initially designed for.
The code is likely faster.
In conclusion: it is always a good idea to read the documentation of functions you're using, and experiment with different syntaxes, so as not to miss similar opportunities to make your code more succinct.

Scipy sparse matrix become dense matrix after assignment

alpha = csr_matrix((1000,1000),dtype=np.float32)
beta = csr_matrix((1,1000),dtype=np.float32)
alpha[0,:] = beta
After initiation, alpha and beta should be sparse matrixes with no element stored there. But after assigning beta to the first row of alpha, alpha become non-sparse, with 1000 zeros stored in alpha. I know I can use eliminate_zeros() to turn alpha back to sparse matrix but is there any better way to do this?
When I copy your steps I get
In [131]: alpha[0,:]=beta
/usr/lib/python3/dist-packages/scipy/sparse/compressed.py:730:
SparseEfficiencyWarning: Changing the sparsity structure of a
csr_matrix is expensive. lil_matrix is more efficient.
SparseEfficiencyWarning)
So that's the first indicator that you are doing something that the developers consider unwise.
We could dig into the csr __setitem__ code, but my guess is that it is converting your beta to dense, and then doing the assignment. And isn't automatically doing the eliminate_zeros step (either during or after the assignment).
Normally why would people be doing a[...]=...? Usually it's to build the sparse matrix. Zeroing out non-zero values is possible, but not frequent enough to treat as a special case.
It's possible for a variety of reasons to have 0 values in a sparse matrix. You could even insert the 0s into alpha.data directly. That's why there are 'cleanup' methods like eliminate_zeros and prune. Even nonzero applies a !=0 mask
# convert to COOrdinate format
A = self.tocoo()
nz_mask = A.data != 0
return (A.row[nz_mask],A.col[nz_mask])
In normal sparse practice you build the data in coo or other format, and then convert to csr for calculations. Matrix multiplication is it's strong point. That constructs a new sparse matrix. Modification of a csr is possible, but not encouraged.
====================
alpha.__setitem__?? (in Ipython) shows
def __setitem__(self, index, x):
# Process arrays from IndexMixin
i, j = self._unpack_index(index)
i, j = self._index_to_arrays(i, j)
if isspmatrix(x):
x = x.toarray()
....
self._set_many(i, j, x.ravel())
So yes, it converts the RHS to a dense array before doing the assignment.

Matlab: Comparing two vectors with different length and different values?

Lets say I have two vectors A and B with different lengths Length(A) is not equal to Length(B) and the Values in Vector A, are not the same as in Vector B. I want to compare each value of B with Values of A (Compare means if Value B(i) is almost the same value of A(1:end) for example B(i)-Tolerance<A(i)<B(i)+Tolerance.
How Can I do this without using for loop since the data is huge?
I know ismember(F), intersect,repmat,find but non of those function can really help me
You may try a solution along these lines:
tol = 0.1;
N = 1000000;
a = randn(1, N)*1000; % create a randomly
b = a + tol*rand(1, N); % b is "tol" away from a
a_bin = floor(a/tol);
b_bin = floor(b/tol);
result = ismember(b_bin, a_bin) | ...
ismember(b_bin, a_bin-1) | ...
ismember(b_bin, a_bin+1);
find(result==0) % should be empty matrix.
The idea is to discretize the a and b variables to bins of size tol. Then, you ask whether b is found in the same bin as any element from a, or in the bin to the left of it, or in the bin to the right of it.
Advantages: I believe ismember is clever inside, first sorting the elements of a and then performing sublinear (log(N)) search per element b. This is unlike approaches which explicitly construct differences of each element in b with elements from a, meaning the complexity is linear in the number of elements in a.
Comparison: for N=100000 this runs 0.04s on my machine, compared to 20s using linear search (timed using Alan's nice and concise tf = arrayfun(#(bi) any(abs(a - bi) < tol), b); solution).
Disadvantages: this leads to that the actual tolerance is anything between tol and 1.5*tol. Depends on your task whether you can live with that (if the only concern is floating point comparison, you can).
Note: whether this is a viable approach depends on the ranges of a and b, and value of tol. If a and b can be very big and tol is very small, the a_bin and b_bin will not be able to resolve individual bins (then you would have to work with integral types, again checking carefully that their ranges suffice). The solution with loops is a safer one, but if you really need speed, you can invest into optimizing the presented idea. Another option, of course, would be to write a mex extension.
It sounds like what you are trying to do is have an ismember function for use on real valued data.
That is, check for each value B(i) in your vector B whether B(i) is within the tolerance threshold T of at least one value in your vector A
This works out something like the following:
tf = false(1, length(b)); %//the result vector, true if that element of b is in a
t = 0.01; %// the tolerance threshold
for i = 1:length(b)
%// is the absolute difference between the
%//element of a and b less that the threshold?
matches = abs(a - b(i)) < t;
%// if b(i) matches any of the elements of a
tf(i) = any(matches);
end
Or, in short:
t = 0.01;
tf = arrayfun(#(bi) any(abs(a - bi) < t), b);
Regarding avoiding the for loop: while this might benefit from vectorization, you may also want to consider looking at parallelisation if your data is that huge. In that case having a for loop as in my first example can be handy since you can easily do a basic version of parallel processing by changing the for to parfor.
Here is a fully vectorized solution. Note that I would actually recommend the solution given by #Alan, as mine is not likely to work for big datasets.
[X Y]=meshgrid(A,B)
M=abs(X-Y)<tolerance
Now the logical index of elements in a that are within the tolerance can be obtained with any(M) and the index for B is found by any(M,2)
bsxfun to the rescue
>> M = abs( bsxfun(#minus, A, B' ) ); %//' difference
>> M < tolerance
Another way to do what you want is with a logical expression.
Since A and B are vectors of different sizes you can't simply subtract and look for values that are smaller than the tolerance, but you can do the following:
Lmat = sparse((abs(repmat(A,[numel(B) 1])-repmat(B',[1 numel(A)])))<tolerance);
and you will get a sparse logical matrix with as many ones in it as equal elements (within tolerance). You could then count how many of those elements you have by writing:
Nequal = sum(sum(Lmat));
You could also get the indexes of the corresponding elements by writing:
[r,c] = find(Lmat);
then the following code will be true (for all j in numel(r)):
B(r(j))==A(c(j))
Finally, you should note that this way you get multiple counts in case there are duplicate entries in A or in B. It may be advisable to use the unique function first. For example:
A_new = unique(A);

MATLAB/General CS: Sampling Without Replacement From Multiple Sets (+Keeping Track of Unsampled Cases)

I currently implementing an optimization algorithm that requires me to sample without replacement from several sets. Although I am coding in MATLAB, this is essentially a CS question.
The situation is as follows:
I have a finite number of sets (A, B, C) each with a finite but possibly different number of elements (a1,a2...a8, b1,b2...b10, c1, c2...c25). I also have a vector of probabilities for each set which lists a probability for each element in that set (i.e. for set A, P_A = [p_a1 p_a2... p_a8] where sum(P_A) = 1). I normally use these to create a probability generating function for each set, which given a uniform number between 0 to 1, can spit out one of the elements from that set (i.e. a function P_A(u), which given u = 0.25, will select a2).
I am looking to sample without replacement from the sets A, B, and C. Each "full sample" is a sequence of elements from each of the different sets i.e. (a1, b3, c2). Note that the space of full samples is the set of all permutations of the elements in A, B, and C. In the example above, this space is (a1,a2...a8) x (b1,b2...b10) x (c1, c2...c25) and there are 8*10*25 = 2000 unique "full samples" in my space.
The annoying part of sampling without replacement with this setup is that if my first sample is (a1, b3, c2) then that does not mean I cannot sample the element a1 again - it just means that I cannot sample the full sequence (a1, b3, c2) again. Another annoying part is that the algorithm I am working with requires me do a function evaluation for all permutations of elements that I have not sampled.
The best method at my disposal right now is to keep track the sampled cases. This is a little inefficient since my sampler is forced to reject any case that has been sampled before (since I'm sampling without replacement). I then do the function evaluations for the unsampled cases, by going through each permutation (ax, by, cz) using nested for loops and only doing the function evaluation if that combination of (ax, by, cz) is not included in the sampled cases. Again, this is a little inefficient since I have to "check" whether each permutation (ax, by, cz) has already been sampled.
I would appreciate any advice in regards to this problem. In particular, I am looking a method to sample without replacement and keep track of unsampled cases that does not explicity list out the full sample space (I usually work with 10 sets with 10 elements each so listing out the full sample space would require a 10^10 x 10 matrix). I realize that this may be impossible, though finding efficient way to do it will allow me to demonstrate the true limits of the algorithm.
Do you really need to keep track of all of the unsampled cases? Even if you had a 1-by-1010 vector that stored a logical value of true or false indicating if that permutation had been sampled or not, that would still require about 10 GB of storage, and MATLAB is likely to either throw an "Out of Memory" error or bring your entire machine to a screeching halt if you try to create a variable of that size.
An alternative to consider is storing a sparse vector of indicators for the permutations you've already sampled. Let's consider your smaller example:
A = 1:8;
B = 1:10;
C = 1:25;
nA = numel(A);
nB = numel(B);
nC = numel(C);
beenSampled = sparse(1,nA*nB*nC);
The 1-by-2000 sparse matrix beenSampled is empty to start (i.e. it contains all zeroes) and we will add a one at a given index for each sampled permutation. We can get a new sample permutation using the function RANDI to give us indices into A, B, and C for the new set of values:
indexA = randi(nA);
indexB = randi(nB);
indexC = randi(nC);
We can then convert these three indices into a single unique linear index into beenSampled using the function SUB2IND:
index = sub2ind([nA nB nC],indexA,indexB,indexC);
Now we can test the indexed element in beenSampled to see if it has a value of 1 (i.e. we sampled it already) or 0 (i.e. it is a new sample). If it has been sampled already, we repeat the process of finding a new set of indices above. Once we have a permutation we haven't sampled yet, we can process it:
while beenSampled(index)
indexA = randi(nA);
indexB = randi(nB);
indexC = randi(nC);
index = sub2ind([nA nB nC],indexA,indexB,indexC);
end
beenSampled(index) = 1;
newSample = [A(indexA) B(indexB) C(indexC)];
%# ...do your subsequent processing...
The use of a sparse array will save you a lot of space if you're only going to end up sampling a small portion of all of the possible permutations. For smaller total numbers of permutations, like in the above example, I would probably just use a logical vector instead of a sparse vector.
Check the matlab documentation for the randi function; you'll just want to use that in conjunction with the length function to choose random entries from each vector. Keeping track of each sampled vector should be as simple as just concatenating it to a matrix;
current_values = [5 89 45]; % lets say this is your current sample set
used_values = [used_values; current_values];
% wash, rinse, repeat

Compact MATLAB matrix indexing notation

I've got an n-by-k sized matrix, containing k numbers per row. I want to use these k numbers as indexes into a k-dimensional matrix. Is there any compact way of doing so in MATLAB or must I use a for loop?
This is what I want to do (in MATLAB pseudo code), but in a more MATLAB-ish way:
for row=1:1:n
finalTable(row) = kDimensionalMatrix(indexmatrix(row, 1),...
indexmatrix(row, 2),...,indexmatrix(row, k))
end
If you want to avoid having to use a for loop, this is probably the cleanest way to do it:
indexCell = num2cell(indexmatrix, 1);
linearIndexMatrix = sub2ind(size(kDimensionalMatrix), indexCell{:});
finalTable = kDimensionalMatrix(linearIndexMatrix);
The first line puts each column of indexmatrix into separate cells of a cell array using num2cell. This allows us to pass all k columns as a comma-separated list into sub2ind, a function that converts subscripted indices (row, column, etc.) into linear indices (each matrix element is numbered from 1 to N, N being the total number of elements in the matrix). The last line uses these linear indices to replace your for loop. A good discussion about matrix indexing (subscript, linear, and logical) can be found here.
Some more food for thought...
The tendency to shy away from for loops in favor of vectorized solutions is something many MATLAB users (myself included) have become accustomed to. However, newer versions of MATLAB handle looping much more efficiently. As discussed in this answer to another SO question, using for loops can sometimes result in faster-running code than you would get with a vectorized solution.
I'm certainly NOT saying you shouldn't try to vectorize your code anymore, only that every problem is unique. Vectorizing will often be more efficient, but not always. For your problem, the execution speed of for loops versus vectorized code will probably depend on how big the values n and k are.
To treat the elements of the vector indexmatrix(row, :) as separate subscripts, you need the elements as a cell array. So, you could do something like this
subsCell = num2cell( indexmatrix( row, : ) );
finalTable( row ) = kDimensionalMatrix( subsCell{:} );
To expand subsCell as a comma-separated-list, unfortunately you do need the two separate lines. However, this code is independent of k.
Convert your sub-indices into linear indices in a hacky way
ksz = size(kDimensionalMatrix);
cksz = cumprod([ 1 ksz(1:end-1)] );
lidx = ( indexmatrix - 1 ) * cksz' + 1; #'
% lindx is now (n)x1 linear indices into kDimensionalMatrix, one index per row of indexmatrix
% access all n values:
selectedValues = kDimensionalMatrix( lindx );
Cheers!