Clojure assert not nil at compile time? - macros

We can see in Clojure a way to use design by contract to check that arguments to a function in Clojure are not-nil at runtime.
(defn constrained-fn [ x]
{:pre [(not (nil? x))]}
x)
(constrained-fn nil)
=> AssertionError Assert failed: (not (nil? x)) ...../constrained-fn (form-init5503436370123861447.clj:1)
We can see a way to check the type of an expression at compile time in Clojure
(defmacro typeof
([expression]
(:class (expression-info expression)))
(defmacro primitive?
([expression]
(:primitive? (expression-info expression))))
Here is my take on the question based on compile-time macros in Clojure:
(defmacro compile-time-nil-check [x] (assert (not (nil? x))))
(def my-nullable nil)
(compile-time-nil-check my-nullable)
My question is - is there a way to check that a 'constant' is not nil at compile time in Clojure?
(I realise this question might seem trivial- I want to use it as a building block for a subsequent question about compile-time type checks in Clojure).

If by 'constant' you mean something stored in a global var
(def my-nullable nil)
that can be resolved at compile-time, then:
(defmacro compile-time-var-nil-check [x]
(let [x #(resolve x)]
(assert (not (nil? x)))))

Related

in clojure language what <'a> really is

actually i am trying to perfectly understand clojure and particularly symbols
(def a 1)
(type a)
;;=>java.lang.Long
(type 'a)
;;=>clojure.lang.Symbol
I know that type is a function so its arguments get evaluated first so i perfectly understand why the code above work this way .In the flowing code i decided to delay the evaluation using macro
(defmacro m-type [x] (type x))
(m-type a)
;;==>clojure.lang.Symbol
and i am fine with that but what i fail to uderstand is this:
(m-type 'a)
;;=>clojure.lang.Cons
why the type of 'a is a cons
the character ' is interpreted by the clojure reader as a reader-macro which expands to a list containing the symbol quote followed by whatever follows the ', so in your call to (m-type 'a) the 'a is expanding to:
user> (macroexpand-1 ''a)
(quote a)
then calling type on the list (quote a) which is a Cons.
This may be a bit more clear if we make the m-type macro print the arguments as it sees them while it is evaluating:
user> (defmacro m-type [x] (println "x is " x) (type x))
#'user/m-type
user> (m-type 'a)
x is (quote a)
clojure.lang.Cons

Evaluation of passed parameters inside macro body

I have a doubt on how parameters passed to the macros are getting evaluated, details below.
This macro is defined
(defmacro test-macro (xlist)
`(* ,#xlist))
and there is this global variable (defvar *test-list* '(1 100 2 200)).
When *test-list* is passed to this macro (test-macro *test-list*) , this error is returned -
value *TEST-LIST* is not of the expected type LIST.
[Condition of type TYPE-ERROR]
But if the function is modified to this, list is returned
(defmacro test-macro (xlist)
`(,#xlist)) ;; removed the * operator
(test-macro *test-list*) will return (1 100 2 200).
So my doubt is why ,#xlist is not getting evaluated in the first case, i.e when the * operator is applied. Any help is highly appreciated.
When debugging macros, The Right Way is to use macroexpand, not evaluate the macro forms. E.g., in your case:
(defmacro test-macro1 (xlist) `(* ,#xlist))
(macroexpand '(test-macro1 foo))
==> (* . FOO)
(defmacro test-macro2 (xlist) `(,#xlist))
(macroexpand '(test-macro2 foo))
==> FOO
neither is probably what you want.
The confusion is that the macro is a pre-processor: it has no built-in mechanism to know of runtime values. So when you use the term:
(test-macro test-list)
all that the macro sees is the identifier test-list: it does not know up-front that the runtime value is a list, only that the source program has used this variable identifier.
A macro is a source-to-source rewriter: it doesn't know about the dynamics of your program. A smarter compiler might be able to see that test-list is a constant and do an inlining, but the macro expander isn't that clever.
What you can do is probably something like this:
(defmacro test-macro (xlist)
(cond
(;; If we see test-macro is being used with a quoted list of things
;; then we can rewrite that statically.
(and (pair? xlist)
(eq? (car xlist) 'quote)
(list? (cadr xlist)))
`(list 'case-1 (* ,#(cadr xlist))))
(;; Also, if we see test-macro is being used with "(list ...)"
;; then we can rewrite that statically.
(and (pair? xlist)
(eq? (car xlist) 'list))
`(list 'case-2 (* ,#(cdr xlist))))
(else
;; Otherwise, do the most generic thing:
`(list 'case-3 (apply * ,xlist)))))
;; This hits the first case:
(test-macro '(3 4 5))
;; ... the second case:
(test-macro (list 5 6 7))
;; ... and the third case:
(defvar test-list '(1 100 2 200))
(test-macro test-list)
With regards to your second version: the macro:
(defmacro test-macro (xlist)
`(,#xlist))
is equivalent to:
(defmacro test-macro (xlist)
xlist)
so that's why you're not getting the error that you received in the first version.

In LISP, what's the difference between "let" and "with"?

A simple example to show the differences in action would really help, since to me they both just seem interchangeable? Thanks :)
In Common Lisp, at least, you can only use with in the context of a loop macro. See the Common Lisp Hyperspec.
They are indeed functionally equivalent.
In fact, at least SBCL expands any use of with in a loop macro invocation into an enclosing LET form.
Running the following:
(macroexpand '(loop with foo = 5 repeat 10 collect foo))
Results in the following expansion:
(BLOCK NIL
(LET ((FOO 5))
(LET ((#:LOOP-REPEAT-1681 (CEILING 10)))
(DECLARE (TYPE INTEGER #:LOOP-REPEAT-1681))
(SB-LOOP::WITH-LOOP-LIST-COLLECTION-HEAD (#:LOOP-LIST-HEAD-1682
#:LOOP-LIST-TAIL-1683)
(SB-LOOP::LOOP-BODY NIL
((IF (<= #:LOOP-REPEAT-1681 0)
(GO SB-LOOP::END-LOOP)
(DECF #:LOOP-REPEAT-1681)))
((SB-LOOP::LOOP-COLLECT-RPLACD
(#:LOOP-LIST-HEAD-1682 #:LOOP-LIST-TAIL-1683)
(LIST FOO)))
((IF (<= #:LOOP-REPEAT-1681 0)
(GO SB-LOOP::END-LOOP)
(DECF #:LOOP-REPEAT-1681)))
((RETURN-FROM NIL
(SB-LOOP::LOOP-COLLECT-ANSWER
#:LOOP-LIST-HEAD-1682))))))))

Trouble with Lisp macros

I'm trying to write a macro in Lisp that re-implements let using itself. This is a trivial exercise which has no practical purpose; however after giving a response to a related question, I realized I should probably learn more about macros. They're touted as one of the great things about Lisp, but I rarely use them.
Anyway, here's what I tried first:
(defmacro mylet (args &rest exp) `(let ,args (dolist (x ,exp) x)))
but when I try something like:
(mylet ((a 5) (b 2)) (print (+ a b)))
this throws up an error:
#1=(PRINT (+ A B)) is not a symbol or lambda expression in the form (#1#) .
args (a and b) are set properly, but the print statement doesn't work. I think it's because I'm using two levels of indirection-- referring to a variable that I've created within the macro. But I can't seem to figure out how to fix it! Any ideas?
Your macro expands to:
(LET ((A 5) (B 2))
(DOLIST (X ((PRINT (+ A B)))) X))
which is invalid because ((PRINT (+ A B))) is not a valid expression. There is also an issue that using an interned symbol in macro expansion can lead to variable capture, but that is not directly relevant (read more in PCL).
Using DOLIST here is unnecessary, and compilcated to get right (you would have to convert all subforms to anonymous function in order to stick them in a list, funcall them in sequence and then store the final result in order to conform to PROGN behaviour). You can just use PROGN, or, since LET includes an implicit PROGN, just splice the body using the ,# feature of backquote mechanism:
(defmacro mylet (args &body exp) `(let ,args ,(cons 'progn exp)))
(defmacro mylet (args &body exp) `(let ,args ,#exp))

let inside cond

I'm working with clojure and while I've dabbled with lisps before, I'm having trouble finding a clean way to nest let statements in cond statements. For example, consider the following function:
(defn operate-on-list [xs]
(let [[unpack vector] (first xs)]
(cond
[(empty? xs) 'empty
unpack vector
:else (operate-on-list (rest xs))])))
It's a pretty standard recursive operation on a list, but it needs to do some work on the first element in the list before it works with the contents. The issue, of course, is that the list may be empty.
In this example, it wouldn't be hard to change unpack to ((first xs) 0) and vector to ((first xs) 1), but this quickly gets ugly if more work needs to be done on (first xs).
Is there any way to effectively use a let statement part-way through a cond?
Thanks.
-Nate
In cases like these, you're best off using if-let:
(defn operate-on-list [xs]
(if-let [[unpack v] (first xs)]
(cond
unpack v
:else (operate-on-list (rest xs)))))
This code walks the given list seq-able (list, vector, array...) of vectors and returns the second element of the first vector whose first element is true (meaning not false or nil). nil is returned if no such vector is found.
Note that vector is a built-in function, so I've chosen v as the variable name, just in case the need to use the function in the body arises in the future. More importantly, you're using too many brackets in your cond syntax; fixed in this version.
UPDATE: Two additional things worth noting about if-let:
The way if-let works, if (first xs) happens to be nil (false would be the same), the destructuring binding never takes place, so Clojure won't complain about not being able to bind nil to [unpack v].
Also, if-let accepts an else clause (in which you can't refer to the variables bound in if-let bindings vector -- though if you're in the else clause, you know they where false or nil anyway).
;use conditional let: http://richhickey.github.com/clojure-contrib/cond-api.html
(use 'clojure.contrib.cond)
(cond-let [b]
nil b
12 (prn (+ b 1))
:else 17 )
;==> 13
Another good example can be found here http://www.mail-archive.com/clojure#googlegroups.com/msg03684.html
Sort of like this, with a let inside the scope of the cond?
(defn operate-on-list [list]
(let [ el_first (first list) ]
(cond
(nil? el_first) (println "Finished")
:else (do
(let [ list_rest (rest list) ]
(println el_first)
(operate-on-list list_rest))))))
(operate-on-list '(1 2 3))
The output is:
1
2
3
Finished