I have an RGB image which is read as a matrix with 3 dimensions, img, and I have a binary mask which represents a segmentation of the image, mask.
How can I crop the image based on the binary mask in matlab?
I tried to select only the pixels marked by the binary mask but the resulted image does not have the original colors.
centralPoints = find(mask > 0);
denoisedImage = zeros(424, 424, 3);
slice1 = zeros(424, 424);
origSlice = img(:, :, 1);
slice1(centralPoints) = origSlice(centralPoints);
slice2 = zeros(424, 424);
origSlice = img(:, :, 2);
slice2(centralPoints) = origSlice(centralPoints);
slice3 = zeros(424, 424);
origSlice = img(:, :, 3);
slice3(centralPoints) = origSlice(centralPoints);
denoisedImage(:, :, 1) = slice1;
denoisedImage(:, :, 2) = slice2;
denoisedImage(:, :, 3) = slice3;
This is the code. img is the original image, centralPoints are the coordinates of the foreground pixels and denoisedImage represents the cropped matrix.
However, denoisedImage does no maintain the colors of the original image inside the cropped region.
The foreground pixels do not form a rectangular region, however, they form one connected component.
Have you tried
denoisedImage = bsxfun( #times, im2double(img), mask > 0 );
Related
By default, MATLAB function imrotate rotate image with black color filled in rotated portion. See this, http://in.mathworks.com/help/examples/images_product/RotationFitgeotransExample_02.png
We can have rotated image with white background also.
Question is, Can we rotate an image (with or without using imrotate) filled with background of original image?
Specific to my problem: Colored image with very small angle of rotation (<=5 deg.)
Here's a naive approach, where we simply apply the same rotation to a mask and take only the parts of the rotated image, that correspond to the transformed mask. Then we just superimpose these pixels on the original image.
I ignore possible blending on the boundary.
A = imread('cameraman.tif');
angle = 10;
T = #(I) imrotate(I,angle,'bilinear','crop');
%// Apply transformation
TA = T(A);
mask = T(ones(size(A)))==1;
A(mask) = TA(mask);
%%// Show image
imshow(A);
You can use padarray() function with 'replicate' and 'both' option to interpolate your image. Then you can use imrotate() function.
In the code below, I've used ceil(size(im)/2) as pad size; but you may want bigger pad size to eliminate the black part. Also I've used s and S( writing imR(S(1)-s(1):S(1)+s(1), S(2)-s(2):S(2)+s(2), :)) to crop the image where you can extract bigger part of image just expanding boundary of index I used below for imR.
Try this:
im = imread('cameraman.tif'); %// You can also read a color image
s = ceil(size(im)/2);
imP = padarray(im, s(1:2), 'replicate', 'both');
imR = imrotate(imP, 45);
S = ceil(size(imR)/2);
imF = imR(S(1)-s(1):S(1)+s(1)-1, S(2)-s(2):S(2)+s(2)-1, :); %// Final form
figure,
subplot(1, 2, 1)
imshow(im);
title('Original Image')
subplot(1, 2, 2)
imshow(imF);
title('Rotated Image')
This gives the output below:
Not so good but better than black thing..
I have a retinal fundus image which has a white border along the corners. I am trying to remove the borders on all four sides of the image. This is a pre-processing step and my image looks like this:
fundus http://snag.gy/XLGkC.jpg
It is an RGB image, and I took the green channel, and created a mask using logical indexing. I searched for pixels which were all black in the image, and eroded the mask to remove the white edge pixels. However, I am not sure how to retrieve the final image, without the white pixel border using the mask that I have. This is my code, and any help would be appreciated:
maskIdx = rgb(:,:,2) == 0; # rgb is the original image
se = strel('disk',3); # erode 3-pixel using a disk structuring element
im2 = imerode(maskIdx, se);
newrgb = rgb(im2); # gives a vector - not the same size as original im
Solved it myself. This is what I did with some help.
I first computed the mask for all three color channels combined. This is because the mask for each channel is not the same when applied to all the three channels individually, and residual pixels will be left in the final image if I used only the mask from one of the channels in the original image:
mask = (rgb(:,:,1) == 0) & (rgb(:,:,2) == 0) & (rgb(:,:,3) == 0);
Next, I used a disk structuring element with a radius of 9 pixels to dilate my mask:
se = strel('disk', 9);
maskIdx = imdilate(mask,se);
EDIT: A structuring element which is arbitrary can also be used. I used: se = strel(ones(9,9))
Then, with the new mask, I multiplied the original image with the new dilated mask:
newImg(:,:,1) = rgb(:,:,1) .* uint8(maskIdx); # image was of double data-type
newImg(:,:,2) = rgb(:,:,2) .* uint8(maskIdx);
newImg(:,:,3) = rgb(:,:,3) .* uint8(maskIdx);
Finally, I subtracted the computed color-mask from the original image to get my desired border-removed image:
finalImg = rgb - newImg;
Result:
image http://snag.gy/g2X1v.jpg
Say I have an image. How can I colour some specific pixels in that image using MATLAB?
Thanks.
RGB Pixels
I'd suggest working with an RGB image, so that you can easily represent color and gray pixels. Here's an example of making two red blocks on an image:
img = imread('moon.tif');
imgRGB = repmat(img,[1 1 3]);
% get a mask of the pixels you want and set an RGB vector to those pixels...
colorMask = false(size(imgRGB,1),size(imgRGB,2));
colorMask(251:300,151:200,:) = true; % two discontiguous blocks
colorMask(50:100,50:100,:) = true;
redPix = permute([255 0 0],[1 3 2]);
imgRGB(repmat(colorMask,[1 1 3])) = repmat(redPix, numel(find(colorMask)),1);
AlphaData image property
Another cool way of doing this is with an image's AlphaData property. See this example on a MathWorks blog. This essentially turns color on or off in certain parts of the image by making the gray image covering the color image transparent. To work with a gray image, do like the following:
img = imread('moon.tif');
influenceImg = abs(randn(size(img)));
influenceImg = influenceImg / (2*max(influenceImg(:)));
imshow(img, 'InitialMag', 'fit'); hold on
green = cat(3, zeros(size(img)), ones(size(img)), zeros(size(img)));
h = imshow(green); hold off
set(h, 'AlphaData', influenceImg)
See the second example at the MathWorks link.
I want to extract an elliptical region from an image (a portion of a face portion from an image) preferably in MATLAB:
For example, in this image, I want to extract the region within red boundary.
Can anyone help me with this ?
Cropping is easy, all you have to do is apply a proper mask. The trick is to create such a mask.
Assuming A is your image, try this:
%# Create an ellipse shaped mask
c = fix(size(A) / 2); %# Ellipse center point (y, x)
r_sq = [76, 100] .^ 2; %# Ellipse radii squared (y-axis, x-axis)
[X, Y] = meshgrid(1:size(A, 2), 1:size(A, 1));
ellipse_mask = (r_sq(2) * (X - c(2)) .^ 2 + ...
r_sq(1) * (Y - c(1)) .^ 2 <= prod(r_sq));
%# Apply the mask to the image
A_cropped = bsxfun(#times, A, uint8(ellipse_mask));
The cropped image will be stored in A_cropped.
Play with the coordinates of the center and the values of the radii until you get the desired result.
EDIT: I extended the solution for RGB images (if matrix A is 3-D).
This the method I use to crop faces into ellipse shape. It makes the background transparent.
[FileName,PathName] = uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files'},'Please Select an Image');
image = imread([PathName FileName]);
imshow(image) %needed to use imellipse
user_defined_ellipse = imellipse(gca, []); % creates user defined ellipse object.
wait(user_defined_ellipse);% You need to click twice to continue.
MASK = double(user_defined_ellipse.createMask());
new_image_name = [PathName 'Cropped_Image_' FileName];
new_image_name = new_image_name(1:strfind(new_image_name,'.')-1); %removing the .jpg, .tiff, etc
new_image_name = [new_image_name '.png']; % making the image .png so it can be transparent
imwrite(image, new_image_name,'png','Alpha',MASK);
msg = msgbox(['The image was written to ' new_image_name],'New Image Path');
waitfor(msg);
I am trying to understand this code:
d=edge(d,'canny',.6);
figure,
imshow(d,[])
ds = bwareaopen(d,40);
figure,
imshow(ds,[])
iout = d1;
BW=ds;
iout(:,:,1) = iout;
iout(:,:,2) = iout(:,:,1);
iout(:,:,3) = iout(:,:,1);
iout(:,:,2) = min(iout(:,:,2) + BW, 1.0);
iout(:,:,3) = min(iout(:,:,3) + BW, 1.0);
I understand that d is the image and canny detector is applied and 40 pixels are neglected. The image is gray scale and contour is added to the image.
Can you please explain the next lines? What principle/algorithm is used here? I am having trouble especially with the contour detection portion of the code.
Assuming that the variable d1 stores what is likely a double precision representation (values between 0 and 1) of the original grayscale intensity image that is operated on, then the last 5 lines will turn that grayscale image into a 3-D RGB image iout that looks the same as the original grayscale image except that the contours will be overlaid on the image in cyan.
Here's an example, using the image 'cameraman.tif' that is included with the MATLAB Image Processing Toolbox:
d1 = double(imread('cameraman.tif'))./255; % Load the image, scale from 0 to 1
subplot(2, 2, 1); imshow(d1); title('d1'); % Plot the original image
d = edge(d1, 'canny', .6); % Perform Canny edge detection
subplot(2, 2, 2); imshow(d); title('d'); % Plot the edges
ds = bwareaopen(d, 40); % Remove small edge objects
subplot(2, 2, 3); imshow(ds); title('ds'); % Plot the remaining edges
iout = d1;
BW = ds;
iout(:, :, 1) = iout; % Initialize red color plane
iout(:, :, 2) = iout(:, :, 1); % Initialize green color plane
iout(:, :, 3) = iout(:, :, 1); % Initialize blue color plane
iout(:, :, 2) = min(iout(:, :, 2) + BW, 1.0); % Add edges to green color plane
iout(:, :, 3) = min(iout(:, :, 3) + BW, 1.0); % Add edges to blue color plane
subplot(2, 2, 4); imshow(iout); title('iout'); % Plot the resulting image
And here is the figure the above code creates:
How it works...
The creation of the image iout has nothing to do with the edge detection algorithm. It's simply an easy way to display the edges found in the previous steps. A 2-D grayscale intensity image can't display color, so if you want to add colored contour lines to the image you have to first convert it to a format that will let you show color: either an indexed image (which is a little harder to deal with, in my experience) or a 3-D RGB image (the third dimension represents the red, green, and blue color components of each pixel).
Replicating the grayscale image 3 times in the third dimension gives us a 3-D RGB image that initially still contains gray colors (equal amounts of red, green, and blue per pixel). However, by modifying certain pixels of each color plane we can add color to the image. By adding the logical edge mask BW (ones where edges are and zeroes elsewhere) to the green and blue color planes, those pixels where the contours were found will appear cyan. The call to the function min ensures that the result of adding the images never causes a pixel color value to exceed the value 1.0, which is the maximum value an element should have for a double-precision 3-D RGB image.
It should also be noted that the code for creating the 3-D RGB image can be simplified to the following:
iout = d1;
iout(:, :, 2) = min(d1+ds, 1.0);
iout(:, :, 3) = min(d1+ds, 1.0);