I have two images(both are exactly same images) and I am trying to calculate the disparity between them using sum of squared distances and reconstruct disparity in 3D space.
Do I need to rectify the image before calculating disparity?
The following are the steps that I have done so far for disparity map computation(I have tried with rectification and without rectification but both are returning all zeroes disparity matrix).
For each pixel in the left image X,
Take the pixels in the same row in the right image.
Separate the row in right image to windows.
For each window,
Calculate the disparity for each pixel in that window with X
Select the pixel in the window which gives minimum SSD with X
Find the pixel with minimum disparity among all windows as the best match to X
Am I doing it correctly?
How can I visualise the 3D reconstruction of the disparity as scatter plot in matlab?
Rectification guarantees that matches are to be found in the same row (for horizontally separated cameras). If you have doubts about rectification of your images you can try to compare rows by drawing horizontal lines between horizontally separated images. If the lines hit the same features you are fine, see the picture below where images are NOT rectified. The fact that they are distorted means there was a lens distortion correction as well as attempted (but not actually performed correctly) rectification.
Now, let’s see what you meant by the same images. Did you mean the images of the same object that were taken from different viewpoints? Note that if the images are literally the same (the same viewpoints) the disparity will be zero as was noted in another answer. The definition of disparity (for horizontally separated cameras) is a value of shift (in the same row) between matching features. The disparity is related to depth (if optical axes of cameras are parallel) as disparity d=f*B/z, where z - depth, B - baseline or separation between cameras and f is a focal length. You can transform the formula above into disparity/B=f/z which basically says that disparity related to camera separation as focal length is related to distance. In other words, the ratios of horizontal and distance measures are equal.
If your images are taken with the cameras shifted horizontally the disparity (in a simple correlation algorithm) is typically calculated in 5-embedded loops:
loop over image1 y
loop over image1 x
loop over disparity d
loop over correlation window y
loop over correlation window x
Disparity, or D_best, gives you the best matching window between image1 and image2 across all possible values of d. Finally, scatterplots are for 3D point clouds while disparity can be rather visualized as a heat color map. If you need to visualize 3D reconstruction or simply saying a 3D point cloud calculate X, Y, Z as:
Z=fB/D, X=uZ/f, Y=v*Z/f, where u and v are related to column and row of wxh image as
u=col-w/2 and v=h/2-row, that is u, v form an image centered coordinate system.
If your two images are exactly the same, then the disparity would be 0 for every pixel. You either have to use two separate cameras to take the images, or take them with a single camera from two different locations. The best way to do 3D reconstruction is to use a calibrated stereo pair of cameras. Here is an example of how to do that using the Computer Vision System Toolbox for MATLAB.
Related
I am attempting to spatially map the cell survival in a given scanned image of a cell flask. Quick background: the cells have received a high dose of irradiation (protons/X-rays) delivered through a grid so that some regions are covered from the irradiation, whereas other regions are not. After scanning such cell colonies, the images are then fed into a segmentation algorithm (in which I have developed using Matlab), centroid coordinates (c_i = (x_i,y_i)) of each detected viable colony are provided.
I have done this type of assessment for grid ‘stripes’, where I have counted colonies within a band along a single dimension (x) and tested for different band widths Δx (as shown in the left figure below). However, my issue is for grid ‘holes’ (see right figure below) – how can I perform the same type of assessment for cell colony survival in two dimensions (x and y) given the centroid coordinates? Do I have to “think” radially?
Thank you in advance for any guidance or help to this problem.
You are in the right direction. In the left side image the variation is along x-axis and you are using a new axis for plating efficiency (y-axis).
Similarly, for grid - you will have to introduce a new axis : z axis. Suppose your image I is 500x500 and each grid-cell is 50x50. So you will create a 10x10 grid G where each cell of G is count of centroids in one 50x50 grid cell of I.
Since visualizing a 3-D chart is difficult, people use images, where the value of z-axis is the intensity in image or the grayscale value of a grayscale image. Make sure to normalize your z-axis values on [0,1] or [0,255] range for using images as your visualization tool.
I have two closed curve stereo rectified edge images. Is it possible to find the disparity(along x-axis in image coordinates) between the edge images and do a 3D reconstruction since I know the camera matrix. I am using matlab for the process. And I will not be able to do a window based technique as it's a binary image since a window based technique requires texture. The question how will I compute the disparity between the edge images? The images are available in the following links. Left Edge image https://www.dropbox.com/s/g5g22f6b0vge9ct/edge_left.jpg?dl=0 Right Edge Image https://www.dropbox.com/s/wjmu3pugldzo2gw/edge_right.jpg?dl=0
For this type of images, you can easily map each edge pixel from the left image to its counterpart in the right image, and therefore calculate the disparity for those pixels as usual.
The mapping can be done in various ways, depending on how typical these images are. For example, using DTW like approach to match curvatures.
For all other pixels in the image, you just don't have any information.
#Photon: Thanks for the suggestion. I did what you suggested. I matched each edge pixel in the left and right image in a DTW like fashion. But there are some pixels whose y-pixel coordinate value differ by 1 or 2 pixels, albeit they are properly rectified. So I calculated the depth by averaging those differing(up to 2-pixel difference in y-axis) edge pixels using least squares method. But I ended getting this space curve (https://www.dropbox.com/s/xbg2q009fjji0qd/false_edge.jpg?dl=0) when they actually should have been like this (https://www.dropbox.com/s/0ib06yvzf3k9dny/true_edge.jpg?dl=0) which is obtained using RGB images.I couldn't think of any other reason why it would be the case since I compared by traversing along the 408 edge pixels.
I'm trying to make a 3D reconstruction from a set of uncalibrated photographs in MATLAB. I use SIFT to detect feature points and matches between images. I want to make a projective reconstruction first and then update this to a metric one using auto-calibration.
I know how to estimate the 3D points from 2 images by computing the fundamental matrix, camera matrices and triangulation. Now say I have 3 images, a, b and c. I compute the camera matrices and 3D points for image a and b. Now I want to update the structure by adding image c. I estimate the camera matrix by using known 3D points (calculated from a and b) that match with 2D points in image c, since:
However when I reconstruct the 3D points between b and c they don't add up with the existing 3D points from a and b. I'm assuming this is because I don't know the correct depth estimates of the points (depicted by s in above formula).
With the factorization method of Sturm and Triggs I can estimate the depths and find the structure and motion. However in order to do this, all points have to be visible in all views, which is not the case for my images. How can I estimate the depths for points not visible in all views?
This is not a question about Matlab. It is about an algorithm.
It is not mathematically possible to estimate the position of a 3D point in an image when you don't see an observation of the point in said image.
There are extensions for factorization to work with missing data. However, the field seems to have converged to Bundle Adjustment as the Gold Standard.
An excellent tutorial on how to achieve what you want can be found here, which is a culmination of several years of research into a working application. Starting from projective reconstruction up to the metric upgrade.
i have to do super resolution of two low resolution images to obtain a high resolution image.
2nd image is taken as base image and the first image is registered with respect to it . i used SURF algorithm for image registration . A Delaunay triangulation is constructed over the points using a built-in MATLAB delaunay function . The HR grid of size is constructed for a prespecified resolution enhancement factor R Then HR algorithm for interpolating the pixel values on the HR grid is summarized next.
HR Algorithm Steps: 1. Construct the Delaunay triangulation over the set of scattered vertices in the irregularly sampled raster formed from the LR frames.
Estimate the gradient vector at each vertex of the triangulation by calculating the unit normal vector of neighbouring vector using cross product method.Sum of the unit normal vector of each triangle multiplied by its area is divided by summation of area of all neighbouring triangles to get the vertex normal.
Approximate each triangle patch in the triangulation by a continuous and, possibly, a continuously differentiable surface, subject to some smoothness constraint. Bivariate polynomials or splines could be the approximants as explained below.
Set the resolution enhancement factor along the horizontal and vertical directions and then calculate the pixel value at each regularly spaced HR grid point to construct the initial HR image
now i have the results shown below
now for one kind of data set i get this result that has a few pixels black and wite in a random manner for the other type i get thin parallel lines all over image after super resolution the results are attached
any one can tell me the reason, i have figured out may be its demosaicing but i am not sure,because i dnt have much understanding of it , moreover can it be a bug in my code but it behaves different for different images, i have increased the size by super resolution twice.
I am using Camera Calibration Toolbox for Matlab. After calibration I have intrinsic and extrinsic parameters of stereo camera system. Next, I would like to determine the distance between the camera system and the object. To get this information, I used the function stereo_triangulation which is included in the Toolbox. Input are two matrixes including pixel coordinates of correspondences in the left and right image.
I tried to get coordinates of correspondences with using of Basic Block Matching method which is described in Matlab's help for Stereo Vision.
Resolution of my pictures is 1280x960 pixels. I know that the biggest disparity is around 520 pixels. I set the maximum of disparity range to 520. But then determine the coordinates takes ages. It is not possible use in practice. Calculating of disparity map is much faster with using of Matlab's function disparity(). But I want the step before - coordinates of correspondences.
Please can you suggest how can I effectively get the coordinates with Matlab?
Disparity and 3D are related by simple formulas (see below) so the time for calculating 3D data and disparity map should be the same. The notation is
f - focal length in pixels,
B - separation between cameras,
u, v - row and column in the system centered on the middle of the image,
d-disparity,
x, y, z - 3D coordinates.
z=f*B/d;
x=z*u/f;
y=z*v/f;
1280x960 is too large resolution for any correlation stereo to work in real time. Think about it: you have to loop over a 2d image, over 2d correlation window and over the range of disparities. This means 5 embedded loops! I don't work with Matlab anymore but I know that it is quite slow.