I am using the Apache Http Client in a Scala application.
The application is fairly high throughput with high parallelism.
I am not sure but I think perhaps I am leaking connections. It seems that whenever the section of code that uses the client gets busy, the application become unresponsive. My suspicion is that I am leaking sockets or something which is then causing other aspects of the application to stop working. It may also not be leaking connections so much as not closing them fast enough.
For more context, occasionally, certain actions lead to this code being executed hundreds of times a minute in parallel. When this happens the Rest API (Spray) of the application becomes unresponsive. There are other areas of the application that operate in high parallelism as well and those never cause a problem with the applications responsiveness.
Cutting back on the parallelism of this section of code does seem to alleviate the problem but isn't a viable long term solution.
Am I forgetting to configure something, or configuring something incorrectly?
The code I am using is something like this:
class SomeClass {
val connectionManager = new PoolingHttpClientConnectionManager()
connectionManager.setDefaultMaxPerRoute(50)
connectionManager.setMaxTotal(500)
val httpClient = HttpClients.custom().setConnectionManager(connectionManager).build()
def postData() {
val post = new HttpPost("http://SomeUrl") // Typically this URL is fixed. It doesn't vary much if at all.
post.setEntity(new StringEntity("Some Data"))
try {
val response = httpClient.execute(post)
try {
// Check the response
} finally {
response.close()
}
} finally {
post.releaseConnection()
}
}
}
EDIT
I can see that I am building up a lot of connections in the TIME_WAIT state. I have tried adjusting the DefaultMaxPerRoute and the MaxTotal to a variety of values with no noticeable effect. It seems like I am missing something and as a result the connections are not being re-used, but I can't find any documentation that suggests what I am missing. It is critical that these connections get re-used.
EDIT 2
With further investigation, using lsof -p, I can see that if I set the MaxPerRoute to 10, there are in fact 10 connections being listed as "ESTABLISHED". I can see that the port numbers do not change. This seems to imply to me that in fact it is re-using the connections.
What that doesn't explain is why I am still leaking connections in this code? The reused connections and leaked connections (found with netstat -a) showing up in TIME_WAIT status share the same base url. So they are definitely related. Is it possible perhaps that I am re-using the connections but then somehow not properly closing the response?
EDIT 3
Located the source of the TIME_WAIT "leak". It was in an unrelated section of code. So it wasn't anything to do with the HttpClient. However after fixing up that code, all the TIME_WAITs went away, but the application is still becoming unresponsive when hitting the HttpClient code many times. Still investigating that portion.
You should really consider re-using HttpClient instance or at least the connection pool that underpins it instead of creating them for each new request execution. If you wish to continue doing the latter, you should also close the client or shut down the connection pool before they go out of scope.
As far as the leak is concerned, it should be relatively easy to track by running your application with context logging for connection management turned out as described here
IMO - you can use a much lower number of maxConnection per domain ( like 5 instead of 50 ) and still completely saturate your network bandwidth, if you use http efficiently.
im not a scala person ( android , java ) but have done lots and lots of optimization on http client side threadpools. IMO - blindly increasing connections per domain to 50 is masking some other serious issue with thruput.
2 points:
if you are using a shared "sharedPoolingClientConnManager" , correctly going to a small pool per domain and you conform to the recommended way of release your conn back to the pool ( you should be able to debug all this seeing a running metric of the state of connection per threadpool instance ) then u should be good.
whatever the parallelism feature of scala , you should understand something of how the 5 respective threads from the pool on a domain are sharing the socket?? IMO from the android/java experience is that even though each thread executor is supposedly doing blocking I/O to the server in the scope of that httpclient.exec statement, the actual channel management involved allows very high thruput without resorting to ASNyC client libs for http.
Android experience may not be relevant because client has only 4 threads. Having said that , even if you have 64 or more threads available , i just dont understand needing more than 10 connection per domain in order to keep your underlying http socket very , very busy with thruput.
Related
I'm curious about if there is some type of standard limit on when is better to use Ajax Polling instead of SSE, from a server side viewpoint.
1 request every second: I'm pretty sure is better SSE
1 request per minute: I'm pretty sure is better Ajax
But what about 1 request every 5 seconds? How can we calculate where is the limit frequency for Ajax or SSE?
No way is 1 request per minute always better for Ajax, so that assumption is flawed from the start. Any kind of frequent polling is nearly always a costly choice. It seems from our previous conversation in comments of another question that you start with a belief that an open TCP socket (whether SSE connection or webSocket connection) is somehow costly to server performance. An idle TCP connection takes zero CPU (maybe every once in a long while, a keep alive might be sent, but other than that, an idle socket does not use CPU). It does use a bit of server memory to handle the socket descriptor, but a highly tuned server can have 1,000,000 open sockets at once. So, your CPU usage is going to be more about how many connections are being established and what are they asking the server to do every time they are established than it is about how many open (and mostly idle) connections there are.
Remember, every http connection has to create a TCP socket (which is roundtrips between client/server), then send the http request, then get the http response, then close the socket. That's a lot of roundtrips of data to do every minute. If the connection is https, it's even more work and roundtrips to establish the connection because of the crypto layer and endpoint certification. So doing all that every minute for hundreds of thousands of clients seems like a massive waste of resources and bandwidth when you could create one SSE connection and the client just listen for data to stream from the server over that connection.
As I said in our earlier comment exchange on a different question, these types of questions are not really answerable in the abstract. You have to have specific requirements of both client and server and a specific understanding of the data being delivered and how urgent it is on the client and therefore a specific polling interval and a specific scale in order to begin to do some calculations or test harnesses to evaluate which might be the more desirable way to do things. There are simply too many variables to come up with a purely hypothetical answer. You have to define a scenario and then analyze different implementations for that specific scenario.
Number of requests per second is only one of many possible variables. For example, if most the time you poll there's actually nothing new, then that gives even more of an advantage to the SSE case because it would have nothing to do at all (zero load on the server other than a little bit of memory used for an open socket most of the time) whereas the polling creates continual load, even when nothing to do.
The #1 advantage to server push (whether implement with SSE or webSocket) is that the server only has to do anything with the client when there is actually pertinent data to send to that specific client. All the rest of the time, the socket is just sitting there idle (perhaps occasionally on a long interval, sending a keep-alive).
The #1 disadvantage to polling is that there may be lots of times that the client is polling the server and the server has to expend resources to deal with the polling request only to inform that client that it has nothing new.
How can we calculate where is the limit frequency for Ajax or SSE?
It's a pretty complicated process. Lots of variables in a specific scenario need to be defined. It's not as simple as just requests/sec. Then, you have to decide what you're attempting to measure or evaluate and at what scale? "Server performance" is the only thing you mention, but that has to be completely defined and different factors such as CPU usage and memory usage have to be weighted into whatever you're measuring or calculating. Then, you may even need to run some test harnesses if the calculations don't yield an obvious answer or if the decision is so critical that you want to verify your calculations with real metrics.
It sounds like you're looking for an answer like "at greater than x requests/min, you should use polling instead of SSE" and I don't think there is an answer that simple. It depends upon far more things than requests/min or requests/sec.
"Polling" incurs overhead on all parties. If you can avoid it, don't poll.
If SSE is an option, it might be a good choice. "It depends".
Q: What (if any) kind of "event(s)" will your app need to handle?
I'm experiencing issues scaling my app with multiple requests.
Each request sends an ask to an actor, which then spawns other actors. This is fine, however, under load(5+ asks at once), the ask takes a massive amount of time to deliver the message to the target actor. The original design was to bulkhead requests evenly, but this is causing a bottleneck. Example:
In this picture, the ask is sent right after the query plan resolver. However, there is a multi-second gap when the Actor receives this message. This is only experienced under load(5+ requests/sec). I first thought this was a starvation issue.
Design:
Each planner-executor is a seperate instance for each request. It spawns a new 'Request Acceptor' actor each time(it logs 'requesting score' when it receives a message).
I gave the actorsystem a custom global executor(big one). I noticed the threads were not utilized beyond the core threadpool size even during this massive delay
I made sure all executioncontexts in the child actors used the correct executioncontext
Made sure all blocking calls inside actors used a future
I gave the parent actor(and all child) a custom dispatcher with core size 50 and max size 100. It did not request more(it stayed at 50) even during these delays
Finally, I tried creating a totally new Actorsystem for each request(inside the planner-executor). This also had no noticable effect!
I'm a bit stumped by this. From these tests it does not look like a thread starvation issue. Back at square one, I have no idea why the message takes longer and longer to deliver the more concurrent requests I make. The Zipkin trace before reaching this point does not degrade with more requests until it reaches the ask here. Before then, the server is able to handle multiple steps to e.g veify the request, talk to the db, and then finally go inside the planner-executor. So I doubt the application itself is running out of cpu time.
We had this very similar issue with Akka. We observed huge delay in ask pattern to deliver messages to the target actor on peek load.
Most of these issues are related to heap memory consumption and not because of usages of dispatchers.
Finally we fixed these issues by tuning some of the below configuration and changes.
1) Make sure you stop entities/actors which are no longer required. If its a persistent actor then you can always bring it back when you need it.
Refer : https://doc.akka.io/docs/akka/current/cluster-sharding.html#passivation
2) If you are using cluster sharding then check the akka.cluster.sharding.state-store-mode. By changing this to persistence we gained 50% more TPS.
3) Minimize your log entries (set it to info level).
4) Tune your logs to publish messages frequently to your logging system. Update the batch size, batch count and interval accordingly. So that the memory is freed. In our case huge heap memory is used for buffering the log messages and send in bulk. If the interval is more then you may fill your heap memory and that affects the performance (more GC activity required).
5) Run blocking operations on a separate dispatcher.
6) Use custom serializers (protobuf) and avoid JavaSerializer.
7) Add the below JAVA_OPTS to your jar
export JAVA_OPTS="$JAVA_OPTS -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap -XX:MaxRAMFraction=2 -Djava.security.egd=file:/dev/./urandom"
The main thing is XX:MaxRAMFraction=2 which will utilize more than 60% of available memory. By default its 4 means your application will use only one fourth of the available memory, which might not be sufficient.
Refer : https://blog.csanchez.org/2017/05/31/running-a-jvm-in-a-container-without-getting-killed/
Regards,
Vinoth
Please look at this scotty app (it's taken directly from this old answer from 2014):
import Web.Scotty
import Database.MongoDB
import qualified Data.Text.Lazy as T
import Control.Monad.IO.Class
runQuery :: Pipe -> Query -> IO [Document]
runQuery pipe query = access pipe master "nutrition" (find query >>= rest)
main = do
pipe <- connect $ host "127.0.0.1"
scotty 3000 $ do
get "/" $ do
res <- liftIO $ runQuery pipe (select [] "stock_foods")
text $ T.pack $ show res
You see how the the database connection (pipe) is created only once when the web app launches. Subsequently, thousands if not millions of visitors will hit the "/" route simultaneously and read from the database using the same connection (pipe).
I have questions about how to properly use Database.MongoDB:
Is this the proper way of setting things up? As opposed to creating a database connection for every visit to "/". In this latter case, we could have millions of connections at once. Is that discouraged? What are the advantages and drawbacks of such an approach?
In the app above, what happens if the database connection is lost for some reason and needs to be created again? How would you recover from that?
What about authentication with the auth function? Should the auth function only be called once after creating the pipe, or should it be called on every hit to "/"?
Some say that I'm supposed to use a pool (Data.Pool). It looks like that would only help limit the number of visitors using the same database connection simultaneously. But why would I want to do that? Doesn't the MongoDB connection have a built-in support for simultaneous usages?
Even if you create connection per client you won't be able to create too many of them. You will hit ulimit. Once you hit that ulimit the client that hit this ulimit will get a runtime error.
The reason it doesn't make sense is because mongodb server will be spending too much time polling all those connections and it will have only as many meaningful workers as many CPUs your db server has.
One connection is not a bad idea, because mongodb is designed to send several requests and wait for responses. So, it will utilize as much resources as your mongodb can have with only one limitation - you have only one pipe for writing, and if it closes accidentally you will need to recreate this pipe yourself.
So, it makes more sense to have a pool of connections. It doesn't need to be big. I had an app which authenticates users and gives them tokens. With 2500 concurrent users per second it only had 3-4 concurrent connections to the database.
Here are the benefits connection pool gives you:
If you hit pool connection limit you will be waiting for the next available connection and will not get runtime error. So, you app will wait a little bit instead of rejecting your client.
Pool will be recreating connections for you. You can configure pool to close excess of connections and create more up until certain limit as you need them. If you connection breaks while you read from it or write to it, then you just take another connection from the pool. If you don't return that broken connection to the pool pool will create another connection for you.
If the database connection is closed then: mongodb listener on this connection will exit printing a error message on your terminal, your app will receive an IO error. In order to handle this error you will need to create another connection and try again. When it comes to handling this situation you understand that it's easier to use a db pool. Because eventually you solution to this will resemble connection pool very much.
I do auth once as part of opening a connection. If you need to auth another user later you can always do it.
Yes, mongodb handles simultaneous usage, but like I said it gives only one pipe to write and it soon becomes a bottle neck. If you create at least as many connections as your mongodb server can afford threads for handling them(CPU count), then they will be going at full speed.
If I missed something feel free to ask for clarifications.
Thank you for your question.
What you really want is a database connection pool. Take a look at the code from this other answer.
Instead of auth, you can use withMongoDBPool to if your MongoDB server is in secure mode.
Is this the proper way of setting things up? As opposed to creating a database connection for every visit to "/". In this latter case, we could have millions of connections at once. Is that discouraged? What are the advantages and drawbacks of such an approach?
You do not want to open one connection and then use it. The HTTP server you are using, which underpins Scotty, is called Warp. Warp has a multi-core, multi-green-thread design. You are allowed to share the same connection across all threads, since Database.MongoDB says outright that connections are thread-safe, but what will happen is that when one thread is blocked waiting for a response (the MongoDB protocol follows a simple request-response design) all threads in your web service will block. This is unfortunate.
We can instead create a connection on every request. This trivially solves the problem of one thread's blocking another but leads to its own share of problems. The overhead of setting up a TCP connection, while not substantial, is also not zero. Recall that every time we want to open or close a socket we have to jump from the user to the kernel, wait for the kernel to update its internal data structures, and then jump back (a context switch). We also have to deal with the TCP handshake and goodbyes. We would also, under high load, run out file descriptors or memory.
It would be nice if we had a solution somewhere in between. The solution should be
Thread-safe
Let us max-bound the number of connections so we don't exhaust the finite resources of the operating system
Quick
Share connections across threads under normal load
Create new connections as we experience increased load
Allow us to clean up resources (like closing a handle) as connections are deleted under reduced load
Hopefully already written and battle-tested by other production systems
It is this exactly problem that resource-pool tackles.
Some say that I'm supposed to use a pool (Data.Pool). It looks like that would only help limit the number of visitors using the same database connection simultaneously. But why would I want to do that? Doesn't the MongoDB connection have a built-in support for simultaneous usages?
It is unclear what you mean by simultaneous usages. There is one interpretation I can guess at: you mean something like HTTP/2, which has pipelining built into the protocol.
standard picture of pipelining http://research.worksap.com/wp-content/uploads/2015/08/pipeline.png
Above we see the client making multiple requests to the server, without waiting for a response, and then the client can receive responses back in some order. (Time flows from the top to the bottom.) This MongoDB does not have. This is a fairly complicated protocol design that is not that much better than just asking your clients to use connection pools. And MongoDB is not alone here: the simple request-and-response design is something that Postgres, MySQL, SQL Server, and most other databases have settled on.
And: it is true that connection pool limits the load you can take as a web service before all threads are blocked and your user just sees a loading bar. But this problem would exist in any of the three scenarios (connection pooling, one shared connection, one connection per request)! The computer has finite resources, and at some point something will collapse under sufficient load. Connection pooling's advantages are that it scales gracefully right up until the point it cannot. The correct solution to handling more traffic is to increase the number of computers; we should not avoid pooling simply due to this problem.
In the app above, what happens if the database connection is lost for some reason and needs to be created again? How would you recover from that?
I believe these kinds of what-if's are outside the scope of Stack Overflow and deserve no better answer than "try it and see." Buuuuuuut given that the server terminates the connection, I can take a stab at what might happen: assuming Warp forks a green thread for each request (which I think it does), each thread will experience an unchecked IOException as it tries to write to the closed TCP connection. Warp would catch this exception and serve it as an HTTP 500, hopefully writing something useful to the logs also. Assuming a single-connection model like you have now, you could either do something clever (but high in lines of code) where you "reboot" your main function and set up a second connection. Something I do for hobby projects: should anything odd occur, like a dropped connection, I ask my supervisor process (like systemd) to watch the logs and restart the web service. Though clearly not a great solution for a production, money-makin' website, it works well enough for small apps.
What about authentication with the auth function? Should the auth function only be called once after creating the pipe, or should it be called on every hit to "/"?
It should be called once after creating the connection. MongoDB authentication is per-connection. You can see an example here of how the db.auth() command mutates the MongoDB server's data structures corresponding to the current client connection.
I am working with Play Framework (Scala) version 2.3. From the docs:
You can’t magically turn synchronous IO into asynchronous by wrapping it in a Future. If you can’t change the application’s architecture to avoid blocking operations, at some point that operation will have to be executed, and that thread is going to block. So in addition to enclosing the operation in a Future, it’s necessary to configure it to run in a separate execution context that has been configured with enough threads to deal with the expected concurrency.
This has me a bit confused on how to tune my webapp. Specifically, since my app has a good amount of blocking calls: a mix of JDBC calls, and calls to 3rd party services using blocking SDKs, what is the strategy for configuring the execution context and determining the number of threads to provide? Do I need a separate execution context? Why can't I simply configure the default pool to have a sufficient amount of threads (and if I do this, why would I still need to wrap the calls in a Future?)?
I know this ultimately will depend on the specifics of my app, but I'm looking for some guidance on the strategy and approach. The play docs preach the use of non-blocking operations everywhere but in reality the typical web-app hitting a sql database has many blocking calls, and I got the impression from reading the docs that this type of app will perform far from optimally with the default configurations.
[...] what is the strategy for configuring the execution context and
determining the number of threads to provide
Well, that's the tricky part which depends on your individual requirements.
First of all, you probably should choose a basic profile from the docs (pure asynchronous, highly synchronous or many specific thread pools)
The second step is to fine-tune your setup by profiling and benchmarking your application
Do I need a separate execution context?
Not necessarily. But it makes sense to use separate execution contexts if you want to trigger all your blocking IO-calls at once and not in a sequential way (so database call B does not have to wait until database call A is finished).
Why can't I simply configure the default pool to have a sufficient
amount of threads (and if I do this, why would I still need to wrap
the calls in a Future?)?
You can, check the docs:
play {
akka {
akka.loggers = ["akka.event.slf4j.Slf4jLogger"]
loglevel = WARNING
actor {
default-dispatcher = {
fork-join-executor {
parallelism-min = 300
parallelism-max = 300
}
}
}
}
}
With this approach, you basically are turning Play into a one-thread-per-request-model. This is not the idea behind Play, but if you're doing a lot of blocking IO calls, it's the simplest approach. In this case, you don't need to wrap your database calls in a Future.
To put it in a nutshell, you basically have three ways to go:
Only use (IO-)technologies whose API calls are non-blocking and asynchronous. This allows you to use a small threadpool / default execution context which suits the nature of Play
Turn Play into a one-thread-per-request Framework by drastically increasing the default execution context. No futures needed, just call your blocking database as always
Create specific execution contexts for your blocking IO-calls and gain fine-grained control of what you are doing
Firstly, before diving in and refactoring your app, you should determine whether this is actually a problem for you. Run some benchmarks (gatling is superb) and do a few profiles with something like JProfiler. If you can live with the current performance then happy days.
The ideal is to use a reactive driver which would return you a future that then gets passed all the way back to your controller. Unfortunately async is still an Open ticket for slick. Interacting with REST APIs can be made reactive using the PlayWS library, but if you have to go via a library that your 3rd party provides then you're stuck.
So, assuming that none of these are feasible and that you do need to improve performance, the question is what benefit would Play's suggestion have? I think what they're getting at here is that it's useful to partition your threads into those that block and those that can make use of asynchronous techniques.
If, for instance, only some proportion of your requests are long and blocking then with a single thread pool you risk all threads being used for the blocking operations. Your controller would then not be able to handle any new requests, irrespective of whether that request needs to call a blocking service. If you can allocate enough threads that this never happens then no problem.
If, on the other hand, you are hitting your limit for threads then by using two pools you can keep your fast, non-blocking requests snappy. You would have one pool servicing requests in your controller and calling into services which return futures. Some of these futures would actually be performing work using a separate pool of threads, but only for the blocking operations. If there is any portion of your app which could be made reactive, then your controller could take advantage of this while isolating the controller from the blocking operations.
We monitor our mongoDB connection count using this:
http://godoc.org/labix.org/v2/mgo#GetStats
However, we have been facing a strange connection leak issue where the connectionCount creeps up consistently by 1 more open connection per 10 seconds. (That's regardless whether there is any requests). I can spin up a server in localhost, leave it there, do nothing, the conectionCount will still creep up. Connection count eventually creeps up to a few thousand and it kills the app/db then and we have to restart the app.
This might not be enough information for you to debug. Does anyone have any ideas, connection leaks that you have dealt with in the past. How did you debug it? What are some of the way that I can debug this.
We have tried a few things, we scanned our code base for any code that could open a connection and put counters/debugging statements there, and so far we have found no leak. It is almost like there is a leak in a library somewhere.
This is a bug in a branch that we have been working on and there have been a few hundred commits into it. We have done a diff between this and master and couldn't find why there is a connection leak in this branch.
As an example, there is the dataset that I am referencing:
Clusters: 1
MasterConns: 9936 <-- creeps up 1 per second
SlaveConns: -7359 <-- why is this negative?
SentOps: 42091780
ReceivedOps: 38684525
ReceivedDocs: 39466143
SocketsAlive: 78 <-- what is the difference between the socket count and the master conns count?
SocketsInUse: 1231
SocketRefs: 1231
MasterConns is the number that creeps up one per 10 second. I am not entirely sure what the other numbers can mean.
MasterConns cannot tell you whether there's a leak or not, because it does not decrease. The field indicates the number of connections made since the last statistics reset, not the number of sockets that are currently in use. The latter is indicated by the SocketsAlive field.
To give you some additional relief on the subject, every single test in the mgo suite is wrapped around logic that ensures that statistics show sane values after the test finishes, so that potential leaks don't go unnoticed. That's the main reason why such statistics collection system was introduced.
Then, the reason why you see this number increasing every 10 seconds or so is due to the internal activity that happens to learn the status of the cluster. That said, this behavior was recently changed so that it doesn't establish new connections and instead picks existent sockets from the pool, so I believe you're not using the latest release.
Having SlaveConns negative looks like a bug. There's a small edge case about statistics collection for connections made, because we cannot tell whether a given server is a master or a slave before we've talked to it, so there might be an uncovered path. If you still see that behavior after you upgrade, please report the issue and I'll be happy to look at it.
SocketsInUse is the number of sockets that are still being referenced by one or more sessions, whether they are alive (the connection is established) or not. SocketsAlive is, again, the real number of live TCP connections. The delta between the two indicates that a number of sessions were not closed. This may be okay, if they are still being held in memory by the application and will eventually be closed, or it may be a leak if a session.Close operation was missed by the application.